摘要翻译:
在视距传播环境下,考虑了一个多小区Massive MIMO系统,每个用户由一个基站服务,基站之间没有合作。每个基站知道其业务天线与其用户之间的信道,并使用这些信道进行预编码和解码。在这些假设下,我们导出了最大比(MR)处理和迫零(ZF)处理下行链路和上行链路的显式有效信干噪比公式。我们还推导了满足预定SINR目标的功率控制公式。文中给出了一个数值算例,说明了所推导公式的应用。
---
英文标题:
《Multi-Cell Massive MIMO in LoS》
---
作者:
Hong Yang, Hien Quoc Ngo, and Erik G. Larsson
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
We consider a multi-cell Massive MIMO system in a line-of-sight (LoS) propagation environment, for which each user is served by one base station, with no cooperation among the base stations. Each base station knows the channel between its service antennas and its users, and uses these channels for precoding and decoding. Under these assumptions we derive explicit downlink and uplink effective SINR formulas for maximum-ratio (MR) processing and zero-forcing (ZF) processing. We also derive formulas for power control to meet pre-determined SINR targets. A numerical example demonstrating the usage of the derived formulas is provided.
---
PDF链接:
https://arxiv.org/pdf/1808.04004