摘要翻译:
根据Hironaka去奇异定理,任何实解析函数经过适当的修正后只存在正规交叉奇点。我们着重讨论了这类函数的解析等价性,这些函数只有正规交叉奇点。我们证明了对于这样的函数$C^{\infty}$right等价意味着解析等价。此外,我们还证明了等价类集的基数为零或可数。
---
英文标题:
《Analytic equivalence of normal crossing functions on a real analytic
manifold》
---
作者:
Goulwen Fichou (IRMAR), Masahiro Shiota
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
By Hironaka Desingularization Theorem, any real analytic function has only normal crossing singularities after a suitable modification. We focus on the analytic equivalence of such functions with only normal crossing singularities. We prove that for such functions $C^{\infty}$ right equivalence implies analytic equivalence. We prove moreover that the cardinality of the set of equivalence classes is zero or countable.
---
PDF链接:
https://arxiv.org/pdf/0811.4569