摘要翻译:
对于两个变量实解析函数芽,我们将Kuo意义下的blow-analysis等价关系与其他自然等价关系进行了比较。我们的主要定理表明$C^1$等价细菌是blow-analysis等价的。这对郭的一个猜想给出了否定的回答。在证明中,我们证明了实Newton-Puiseux根的Puiseux对是由函数芽的$C^1$等价保持的。根据实树模型对blow-analysis等价性的组合刻画,得到了证明。我们还给出了几个不是blow-analysis等价的bi-Lipschitz等价细菌的例子。
---
英文标题:
《Equivalence relations for two variable real analytic function germs》
---
作者:
Satoshi Koike, Adam Parusinski
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
For two variable real analytic function germs we compare the blow-analytic equivalence in the sense of Kuo to the other natural equivalence relations. Our main theorem states that $C^1$ equivalent germs are blow-analytically equivalent. This gives a negative answer to a conjecture of Kuo. In the proof we show that the Puiseux pairs of real Newton-Puiseux roots are preserved by the $C^1$ equivalence of function germs. The proof is achieved, being based on a combinatorial characterisation of blow-analytic equivalence in terms of the real tree model. We also give several examples of bi-Lipschitz equivalent germs that are not blow-analytically equivalent.
---
PDF链接:
https://arxiv.org/pdf/0801.2650