全部版块 我的主页
论坛 经济学人 二区 外文文献专区
235 0
2022-04-15
摘要翻译:
本文提出了一种基于图的旁路广播V2V通信资源分配方案。eNodeBs利用现有的车辆地理位置和频谱资源利用信息,能够为分布在多个通信集群中的不同车辆分配相同的副链路资源。在通信集群中,由于车辆不能同时发送和接收,即它们必须在正交的时间资源中发送,因此防止时域分配冲突至关重要。在这项研究中,我们提出了一个基于二部图的解决方案,其中车辆和频谱资源由顶点表示,而边缘表示每个资源中基于每个车辆感知到的信干噪比的可实现速率。上述时间正交性约束可以通过将冲突顶点聚集成宏顶点来逼近,同时降低了搜索复杂度。我们通过数学和仿真证明了所提出的方法得到了最优解。此外,我们提供的仿真结果表明,所提出的方法优于其他竞争方法,特别是在车辆密度较高的情况下。
---
英文标题:
《Poster: Resource Allocation with Conflict Resolution for Vehicular
  Sidelink Broadcast Communications》
---
作者:
Luis F. Abanto-Leon, Arie Koppelaar, Sonia Heemstra de Groot
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  In this paper we present a graph-based resource allocation scheme for sidelink broadcast V2V communications. Harnessing available information on geographical position of vehicles and spectrum resources utilization, eNodeBs are capable of allotting the same set of sidelink resources to different vehicles distributed among several communications clusters. Within a communications cluster, it is crucial to prevent time-domain allocation conflicts since vehicles cannot transmit and receive simultaneously, i.e., they must transmit in orthogonal time resources. In this research, we present a solution based on a bipartite graph, where vehicles and spectrum resources are represented by vertices whereas the edges represent the achievable rate in each resource based on the SINR that each vehicle perceives. The aforementioned time orthogonality constraint can be approached by aggregating conflicting vertices into macro-vertices which, in addition, reduces the search complexity. We show mathematically and through simulations that the proposed approach yields an optimal solution. In addition, we provide simulations showing that the proposed method outperforms other competing approaches, specially in scenarios with high vehicular density.
---
PDF链接:
https://arxiv.org/pdf/1805.08068
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群