全部版块 我的主页
论坛 经济学人 二区 外文文献专区
341 0
2022-04-15
摘要翻译:
在许多情况下,近似贝叶斯方法的应用受到两个实际特点的阻碍:1)需要将数据向下投影到低维摘要,包括该投影的选择,这最终导致低效的推理;2)可能缺乏对基础模型结构偏差的鲁棒性。基于这些效率和鲁棒性的考虑,我们构造了一种新的贝叶斯方法,该方法可以在底层模型很好指定的情况下提供有效的估计量,同时对某些形式的模型错误描述具有鲁棒性。这种新方法通过考虑经验和模拟概率测度之间的范数来绕过总结的计算。对于范数的特定选择,我们证明了这种方法可以提供与使用精确贝叶斯推理获得的点估计量一样有效的点估计量,同时也显示出对偏离基本模型假设的鲁棒性。
---
英文标题:
《Robust and Efficient Approximate Bayesian Computation: A Minimum
  Distance Approach》
---
作者:
David T. Frazier
---
最新提交年份:
2020
---
分类信息:

一级分类:Statistics        统计学
二级分类:Methodology        方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Economics        经济学
二级分类:Econometrics        计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Mathematics        数学
二级分类:Statistics Theory        统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics        统计学
二级分类:Statistics Theory        统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--

---
英文摘要:
  In many instances, the application of approximate Bayesian methods is hampered by two practical features: 1) the requirement to project the data down to low-dimensional summary, including the choice of this projection, which ultimately yields inefficient inference; 2) a possible lack of robustness to deviations from the underlying model structure. Motivated by these efficiency and robustness concerns, we construct a new Bayesian method that can deliver efficient estimators when the underlying model is well-specified, and which is simultaneously robust to certain forms of model misspecification. This new approach bypasses the calculation of summaries by considering a norm between empirical and simulated probability measures. For specific choices of the norm, we demonstrate that this approach can deliver point estimators that are as efficient as those obtained using exact Bayesian inference, while also simultaneously displaying robustness to deviations from the underlying model assumptions.
---
PDF链接:
https://arxiv.org/pdf/2006.14126
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群