摘要翻译:
我们考虑了严格平稳的重尾时间序列,其有限维指数测度集中在轴上,因此不能用适用于极值相关时间序列的经典多元正则变分来解决其极值性质。通过引入一系列标度函数和条件标度指数,恢复了具有极值独立性的时间序列的极限行为的相关信息。这两个量比广泛使用的尾部依赖系数提供了更多关于联合极值的信息。我们计算了各种模型的标度函数和标度指数,包括马尔可夫链模型、指数自回归模型、重尾新息随机波动率模型和波动率模型。
---
英文标题:
《Heavy tailed time series with extremal independence》
---
作者:
Rafal Kulik and Philippe Soulier
---
最新提交年份:
2014
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
We consider strictly stationary heavy tailed time series whose finite-dimensional exponent measures are concentrated on axes, and hence their extremal properties cannot be tackled using classical multivariate regular variation that is suitable for time series with extremal dependence. We recover relevant information about limiting behavior of time series with extremal independence by introducing a sequence of scaling functions and conditional scaling exponent. Both quantities provide more information about joint extremes than a widely used tail dependence coefficient. We calculate the scaling functions and the scaling exponent for variety of models, including Markov chains, exponential autoregressive model, stochastic volatility with heavy tailed innovations or volatility.
---
PDF下载:
-->