英文标题:
《Branching ratio approximation for the self-exciting Hawkes process》
---
作者:
Stephen J. Hardiman and Jean-Philippe Bouchaud
---
最新提交年份:
2014
---
英文摘要:
  We introduce a model-independent approximation for the branching ratio of Hawkes self-exciting point processes. Our estimator requires knowing only the mean and variance of the event count in a sufficiently large time window, statistics that are readily obtained from empirical data. The method we propose greatly simplifies the estimation of the Hawkes branching ratio, recently proposed as a proxy for market endogeneity and formerly estimated using numerical likelihood maximisation. We employ our new method to support recent theoretical and experimental results indicating that the best fitting Hawkes model to describe S&P futures price changes is in fact critical (now and in the recent past) in light of the long memory of financial market activity. 
---
中文摘要:
我们引入了一个与模型无关的霍克斯自激点过程分支比近似。我们的估计器只需要知道足够大的时间窗口内事件计数的均值和方差,这些统计数据很容易从经验数据中获得。我们提出的方法大大简化了霍克斯分支比率的估计,霍克斯分支比率最近被提出作为市场内生性的代理,以前使用数值似然最大化进行估计。我们使用我们的新方法来支持最近的理论和实验结果,表明从金融市场活动的长期记忆来看,描述标准普尔期货价格变化的最佳拟合霍克斯模型实际上是至关重要的(现在和最近)。
---
分类信息:
一级分类:Quantitative Finance        数量金融学
二级分类:Statistical Finance        统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
PDF下载:
-->