英文标题:
《Intensity Process for a Pure Jump L\\\'evy Structural Model with
  Incomplete Information》
---
作者:
Xin Dong and Harry Zheng
---
最新提交年份:
2014
---
英文摘要:
  In this paper we discuss a credit risk model with a pure jump L\\\'evy process for the asset value and an unobservable random barrier. The default time is the first time when the asset value falls below the barrier. Using the indistinguishability of the intensity process and the likelihood process, we prove the existence of the intensity process of the default time and find its explicit representation in terms of the distance between the asset value and its running minimal value. We apply the result to find the instantaneous credit spread process and illustrate it with a numerical example. 
---
中文摘要:
在本文中,我们讨论了一个具有资产价值的纯跳跃Léevy过程和不可观测随机障碍的信用风险模型。默认时间是资产价值第一次降至屏障以下的时间。利用强度过程和似然过程的不可区分性,我们证明了违约时间强度过程的存在性,并找到了它在资产价值与其运行极小值之间距离的显式表示。我们将所得结果应用于求解瞬时信用利差过程,并用一个数值例子加以说明。
---
分类信息:
一级分类:Quantitative Finance        数量金融学
二级分类:Mathematical Finance        数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->