英文标题:
《Convergence in Multiscale Financial Models with Non-Gaussian Stochastic
Volatility》
---
作者:
Martino Bardi, Annalisa Cesaroni, Andrea Scotti
---
最新提交年份:
2014
---
英文摘要:
We consider stochastic control systems affected by a fast mean reverting volatility $Y(t)$ driven by a pure jump L\\\'evy process. Motivated by a large literature on financial models, we assume that $Y(t)$ evolves at a faster time scale $\\frac{t}{\\varepsilon}$ than the assets, and we study the asymptotics as $\\varepsilon\\to 0$. This is a singular perturbation problem that we study mostly by PDE methods within the theory of viscosity solutions.
---
中文摘要:
我们考虑随机控制系统受快速均值回复波动率$Y(t)$的影响,该波动率由纯跳跃L趵evy过程驱动。受大量金融模型文献的启发,我们假设$Y(t)$的时间尺度$\\frac{t}{\\varepsilon}$比资产的时间尺度$\\frac{t}{\\varepsilon}$发展得更快,我们研究了$\\varepsilon\\到0$的渐近性。这是一个奇异摄动问题,我们主要用粘性解理论中的偏微分方程方法来研究。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Mathematics 数学
二级分类:Analysis of PDEs 偏微分方程分析
分类描述:Existence and uniqueness, boundary conditions, linear and non-linear operators, stability, soliton theory, integrable PDE\'s, conservation laws, qualitative dynamics
存在唯一性,边界条件,线性和非线性算子,稳定性,孤子理论,可积偏微分方程,守恒律,定性动力学
--
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
PDF下载:
-->