英文标题:
《Multilevel path simulation for weak approximation schemes》
---
作者:
Denis Belomestny, Tigran Nagapetyan
---
最新提交年份:
2014
---
英文摘要:
In this paper we discuss the possibility of using multilevel Monte Carlo (MLMC) methods for weak approximation schemes. It turns out that by means of a simple coupling between consecutive time discretisation levels, one can achieve the same complexity gain as under the presence of a strong convergence. We exemplify this general idea in the case of weak Euler scheme for L\\\'evy driven stochastic differential equations, and show that, given a weak convergence of order $\\alpha\\geq 1/2,$ the complexity of the corresponding \"weak\" MLMC estimate is of order $\\varepsilon^{-2}\\log ^{2}(\\varepsilon).$ The numerical performance of the new \"weak\" MLMC method is illustrated by several numerical examples.
---
中文摘要:
本文讨论了用多层蒙特卡罗(MLMC)方法求解弱近似格式的可能性。结果表明,通过连续时间离散化级别之间的简单耦合,可以获得与强收敛情况下相同的复杂性增益。我们举例说明了这一一般思想在L掼evy驱动的随机微分方程的弱Euler格式的情况下,并表明,给定$\\alpha\\geq 1/2阶的弱收敛,相应的“弱”MLMC估计的复杂度为$\\varepsilon^{-2}\\log^{2}(\\varepsilon)通过几个数值例子说明了新的“弱”MLMC方法的数值性能。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
PDF下载:
-->