英文标题:
《Market impacts and the life cycle of investors orders》
---
作者:
Emmanuel Bacry, Adrian Iuga, Matthieu Lasnier, Charles-Albert Lehalle
---
最新提交年份:
2014
---
英文摘要:
In this paper, we use a database of around 400,000 metaorders issued by investors and electronically traded on European markets in 2010 in order to study market impact at different scales. At the intraday scale we confirm a square root temporary impact in the daily participation, and we shed light on a duration factor in $1/T^{\\gamma}$ with $\\gamma \\simeq 0.25$. Including this factor in the fits reinforces the square root shape of impact. We observe a power-law for the transient impact with an exponent between $0.5$ (for long metaorders) and $0.8$ (for shorter ones). Moreover we show that the market does not anticipate the size of the meta-orders. The intraday decay seems to exhibit two regimes (though hard to identify precisely): a \"slow\" regime right after the execution of the meta-order followed by a faster one. At the daily time scale, we show price moves after a metaorder can be split between realizations of expected returns that have triggered the investing decision and an idiosynchratic impact that slowly decays to zero. Moreover we propose a class of toy models based on Hawkes processes (the Hawkes Impact Models, HIM) to illustrate our reasoning. We show how the Impulsive-HIM model, despite its simplicity, embeds appealing features like transience and decay of impact. The latter is parametrized by a parameter $C$ having a macroscopic interpretation: the ratio of contrarian reaction (i.e. impact decay) and of the \"herding\" reaction (i.e. impact amplification).
---
中文摘要:
在本文中,为了研究不同规模的市场影响,我们使用了一个数据库,该数据库包含了2010年在欧洲市场上以电子方式交易的投资者发行的约40万元订单。在日内量表中,我们确认了日常参与中的平方根临时影响,并且我们用$\\gamma\\simeq 0.25$说明了1美元/T^{\\gamma}$的持续时间系数。在配合中加入这一因素可以加强冲击的平方根形状。我们观察到瞬态冲击的幂律,指数介于$0.5$(长元序)和$0.8$(短元序)之间。此外,我们还表明,市场并不预期元订单的规模。日内衰变似乎表现出两种状态(尽管很难精确识别):一种是在执行元顺序之后的“缓慢”状态,另一种是更快的状态。在每日时间尺度上,我们展示了元指令后的价格变动,可以在触发投资决策的预期回报实现和缓慢衰减为零的特质影响之间进行分割。此外,我们提出了一类基于霍克斯过程的玩具模型(霍克斯冲击模型,HIM)来说明我们的推理。我们展示了冲动的HIM模型,尽管它很简单,但却嵌入了吸引人的特性,比如冲击的短暂性和衰减性。后者由一个参数$C$进行参数化,该参数具有宏观解释:反向反应(即冲击衰减)和“羊群”反应(即冲击放大)的比率。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Trading and Market Microstructure 交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
---
PDF下载:
-->