英文标题:
《Coupling news sentiment with web browsing data improves prediction of
  intra-day price dynamics》
---
作者:
Gabriele Ranco, Ilaria Bordino, Giacomo Bormetti, Guido Caldarelli,
  Fabrizio Lillo, Michele Treccani
---
最新提交年份:
2015
---
英文摘要:
  The new digital revolution of big data is deeply changing our capability of understanding society and forecasting the outcome of many social and economic systems. Unfortunately, information can be very heterogeneous in the importance, relevance, and surprise it conveys, affecting severely the predictive power of semantic and statistical methods. Here we show that the aggregation of web users\' behavior can be elicited to overcome this problem in a hard to predict complex system, namely the financial market. Specifically, our in-sample analysis shows that the combined use of sentiment analysis of news and browsing activity of users of Yahoo! Finance greatly helps forecasting intra-day and daily price changes of a set of 100 highly capitalized US stocks traded in the period 2012-2013. Sentiment analysis or browsing activity when taken alone have very small or no predictive power. Conversely, when considering a \"news signal\" where in a given time interval we compute the average sentiment of the clicked news, weighted by the number of clicks, we show that for nearly 50% of the companies such signal Granger-causes hourly price returns. Our result indicates a \"wisdom-of-the-crowd\" effect that allows to exploit users\' activity to identify and weigh properly the relevant and surprising news, enhancing considerably the forecasting power of the news sentiment. 
---
中文摘要:
大数据的新数字革命正在深刻改变我们理解社会和预测许多社会和经济系统结果的能力。不幸的是,信息在其传达的重要性、相关性和惊喜方面可能非常异构,严重影响了语义和统计方法的预测能力。在这里,我们展示了在一个难以预测的复杂系统中,即金融市场中,可以通过聚合网络用户的行为来克服这个问题。具体来说,我们的样本分析表明,将新闻情绪分析与雅虎用户的浏览活动结合使用!《金融》极大地帮助预测了2012-2013年期间交易的100只高度资本化的美国股票的日内和每日价格变化。单独进行情绪分析或浏览活动时,预测能力很小或没有。相反,当考虑一个“新闻信号”时,在给定的时间间隔内,我们计算点击新闻的平均情绪,通过点击次数加权,我们表明,对于近50%的公司,这种信号格兰杰会导致每小时的价格回报。我们的结果表明,“群体智慧”效应允许利用用户的活动来识别和适当权衡相关和令人惊讶的新闻,大大增强了新闻情绪的预测能力。
---
分类信息:
一级分类:Quantitative Finance        数量金融学
二级分类:Statistical Finance        统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Quantitative Finance        数量金融学
二级分类:Computational Finance        计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
PDF下载:
-->