全部版块 我的主页
论坛 经济学人 二区 外文文献专区
277 0
2022-05-07
英文标题:
《Short-time at-the-money skew and rough fractional volatility》
---
作者:
Masaaki Fukasawa
---
最新提交年份:
2015
---
英文摘要:
  The Black-Scholes implied volatility skew at the money of SPX options is known to obey a power law with respect to the time-to-maturity. We construct a model of the underlying asset price process which is dynamically consistent to the power law. The volatility process of the model is driven by a fractional Brownian motion with Hurst parameter less than half. The fractional Brownian motion is correlated with a Brownian motion which drives the asset price process. We derive an asymptotic expansion of the implied volatility as the time-to-maturity tends to zero. For this purpose we introduce a new approach to validate such an expansion, which enables us to treat more general models than in the literature. The local-stochastic volatility model is treated as well under an essentially minimal regularity condition in order to show such a standard model cannot be dynamically consistent to the power law.
---
中文摘要:
众所周知,SPX期权的Black-Scholes隐含波动率偏斜在到期时间上遵循幂律。我们构建了一个动态符合幂律的标的资产价格过程模型。该模型的波动过程由分数布朗运动驱动,Hurst参数小于一半。分数布朗运动与驱动资产价格过程的布朗运动相关。我们推导了当到期时间趋于零时隐含波动率的渐近展开式。为此,我们引入了一种新的方法来验证这种扩展,这使我们能够处理比文献中更一般的模型。为了证明这样一个标准模型不能动态地与幂律相一致,在一个本质上最小的正则性条件下也处理了局部随机波动率模型。
---
分类信息:

一级分类:Quantitative Finance        数量金融学
二级分类:Mathematical Finance        数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--

---
PDF下载:
-->
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群