我们用基函数的低维向量对广义残差进行处理,形成标准函数Ln(单变量情况下维数为6,双变量情况下维数为10)。在不同的量纲基础上也得到了类似的结果。表3给出了估计值和自举90%置信区间。我们使用静态引导法对数据进行了1000次重采样,预期数据块长度为四分之六。在左面板中,我们重新估计每个引导复制的β、γ、λ、χ、ρ、y和L。我们丢弃了(β,γ)估计量无法收敛的极小部分复制。在右侧面板中,我们计算β和γ,并重新估计每个引导复制的λ、χ、ρ、y和L。(gt,dt)政府部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门部门(0.980.9812(0.9812(0.9812(0.970.9712(0.970.970.970.970 0.0381)0.0215(0.0000,0.0426)0.0128(0.0090,0.0185)0.0203(0.0146,0.0295)0.0297(0.0198,0.0435)^β0.9851(0.9784,0.9926)0.9853(0.9771,0.9921)0.99 0.99 0.99^γ24.4712(0.6850,44.7570)27.4838(0.0000,50.4619)20 25 30^λ0.8999(0.8146,0.9922)0.8872(0.7927,0.9888)0.9154(0.9008,0.9324)0.8983(0.8789,0.9205)0.8834(0.8579,0.9111)表3:左面板:与β、β、γ、β、γ、γ、γ、γ、γ、γ、γ相对应的估计值。右面板:对应于预先指定(β,γ)和估计(λ,χ)的ρ、y和L的估计值。90%的引导置信区间在括号中。几个值得注意的方面。首先,这两个州的具体情况都会产生一个永久性的组成部分,其熵与长期债券每季度约2%的回报溢价相一致,这在经验合理估计的范围内。第二,估计的每季度1.9%左右的长期收益率太大,这可以用^β的低值来解释。