英文标题:
《Switching-GAS Copula Models With Application to Systemic Risk》
---
作者:
Mauro Bernardi and Leopoldo Catania
---
最新提交年份:
2016
---
英文摘要:
Recent financial disasters have emphasised the need to accurately predict extreme financial losses and their consequences for the institutions belonging to a given financial market. The ability of econometric models to predict extreme events strongly relies on their flexibility to account for the highly nonlinear and asymmetric dependence observed in financial returns. We develop a new class of flexible Copula models where the evolution of the dependence parameters follow a Markov-Switching Generalised Autoregressive Score (SGASC) dynamics. Maximum Likelihood estimation is consistently performed using the Inference Functions for Margins (IFM) approach and a version of the Expectation-Maximisation (EM) algorithm specifically tailored to this class of models. The SGASC models are then used to estimate the Conditional Value-at-Risk (CoVaR), which is defined as the VaR of a given asset conditional on another asset (or portfolio) being in financial distress, and the Conditional Expected Shortfall (CoES). Our empirical investigation shows that the proposed SGASC models are able to explain and predict the systemic risk contribution of several European countries. Moreover, we also find that the SGASC models outperform competitors using several CoVaR backtesting procedures.
---
中文摘要:
最近的金融灾难强调了准确预测极端金融损失及其对特定金融市场机构后果的必要性。经济计量模型预测极端事件的能力在很大程度上取决于它们对财务回报中观察到的高度非线性和不对称依赖的灵活性。我们开发了一类新的柔性Copula模型,其中依赖参数的演化遵循马尔可夫切换广义自回归分数(SGASC)动力学。最大似然估计始终使用边际推理函数(IFM)方法和专门针对此类模型的期望最大化(EM)算法。然后,SGASC模型被用于估计条件风险价值(CoVaR),它被定义为以另一项资产(或投资组合)陷入财务困境为条件的给定资产的VaR,以及条件预期短缺(COE)。我们的实证研究表明,提出的SGASC模型能够解释和预测几个欧洲国家的系统性风险贡献。此外,我们还发现,SGASC模型通过几种CoVaR回溯测试程序的表现优于竞争对手。
---
分类信息:
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
---
PDF下载:
-->