英文标题:
《Identifying collusion groups using spectral clustering》
---
作者:
Suneel Sarswat, Kandathil Mathew Abraham, Subir Kumar Ghosh
---
最新提交年份:
2016
---
英文摘要:
In an illiquid stock, traders can collude and place orders on a predetermined price and quantity at a fixed schedule. This is usually done to manipulate the price of the stock or to create artificial liquidity in the stock, which may mislead genuine investors. Here, the problem is to identify such group of colluding traders. We modeled the problem instance as a graph, where each trader corresponds to a vertex of the graph and trade corresponds to edges of the graph. Further, we assign weights on edges depending on total volume, total number of trades, maximum change in the price and commonality between two vertices. Spectral clustering algorithms are used on the constructed graph to identify colluding group(s). We have compared our results with simulated data to show the effectiveness of spectral clustering to detecting colluding groups. Moreover, we also have used parameters of real data to test the effectiveness of our algorithm.
---
中文摘要:
在非流动性股票中,交易者可以串通,以预定的价格和数量在固定的时间表下订单。这样做通常是为了操纵股票价格或在股票中创造人为的流动性,这可能会误导真正的投资者。在这里,问题是如何识别这类串通交易者。我们将问题实例建模为一个图,其中每个交易者对应于图的一个顶点,交易对应于图的边。此外,我们根据总交易量、交易总数、价格的最大变化和两个顶点之间的公共性,在边上指定权重。在构造的图上使用谱聚类算法来识别合谋群。我们将我们的结果与模拟数据进行了比较,以证明谱聚类在检测共谋群体方面的有效性。此外,我们还使用了真实数据的参数来测试算法的有效性。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Trading and Market Microstructure 交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
一级分类:Computer Science 计算机科学
二级分类:Computational Engineering, Finance, and Science 计算工程、金融和科学
分类描述:Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics).
涵盖了计算机科学在科学、工程和金融领域复杂系统的数学建模中的应用。这里的论文是跨学科和面向应用的,集中在技术和工具,使挑战性的计算模拟能够执行,其中往往需要使用超级计算机或分布式计算平台。包括ACM学科课程J.2、J.3和J.4(经济学)中的材料。
--
一级分类:Statistics 统计学
二级分类:Machine Learning
机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
PDF下载:
-->