英文标题:
《A Finite Volume - Alternating Direction Implicit Approach for the
Calibration of Stochastic Local Volatility Models》
---
作者:
Maarten Wyns and Jacques Du Toit
---
最新提交年份:
2016
---
英文摘要:
Calibration of stochastic local volatility (SLV) models to their underlying local volatility model is often performed by numerically solving a two-dimensional non-linear forward Kolmogorov equation. We propose a novel finite volume (FV) discretization in the numerical solution of general 1D and 2D forward Kolmogorov equations. The FV method does not require a transformation of the PDE. This constitutes a main advantage in the calibration of SLV models as the pertinent PDE coefficients are often nonsmooth. Moreover, the FV discretization has the crucial property that the total numerical mass is conserved. Applying the FV discretization in the calibration of SLV models yields a non-linear system of ODEs. Numerical time stepping is performed by the Hundsdorfer-Verwer ADI scheme to increase the computational efficiency. The non-linearity in the system of ODEs is handled by introducing an inner iteration. Ample numerical experiments are presented that illustrate the effectiveness of the calibration procedure.
---
中文摘要:
随机局部波动率(SLV)模型与其基础局部波动率模型的校准通常通过数值求解二维非线性前向Kolmogorov方程来完成。我们提出了一种新的有限体积(FV)离散方法,用于一般一维和二维正演Kolmogorov方程的数值解。FV方法不需要转换PDE。这构成了SLV模型校准的主要优势,因为相关PDE系数通常是非光滑的。此外,FV离散化的关键特性是数值总质量守恒。将FV离散化应用于SLV模型的标定,得到一个非线性常微分方程组。为了提高计算效率,采用Hundsdorfer-Verwer-ADI格式进行了数值时间步进。常微分方程系统中的非线性通过引入内部迭代来处理。文中给出了大量的数值实验,验证了标定方法的有效性。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Numerical Analysis 数值分析
分类描述:Numerical algorithms for problems in analysis and algebra, scientific computation
分析和代数问题的数值算法,科学计算
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
PDF下载:
-->