全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 数据分析师(CDA)专版
745 0
2022-05-30
有部分同学,在学习初期,会认为下采样和池化是指同样的事情,只是叫法不同而已,其实这是一种错误的认知。

下采样(subsampled),或称为降采样(downsampled),指缩小图像。其主要目是使得图像符合显示区域的大小,生成对应图像的缩略图。

而池化(Pooling)则是卷积神经网络中一个重要的概念,它是降采样的一种形式。它会压缩输入的特征图,一方面减少了特征,导致了参数减少,进而简化了卷积网络计算时的复杂度;另一方面保持了特征的某种不变性(旋转、平移、伸缩等)。

池化的方法:

max-pooling:对邻域内特征点取最大值;

mean-pooling:对邻域内特征点求平均。

池化的作用:

降维,减少网络要学习的参数数量;

防止过拟合;

扩大感受野;

实现不变性(平移、旋转、尺度不变性)


关于池化的解释:

池化 = 涨水


池化的过程 = 升高水位(扩大矩阵网格)


池化的目的是为了得到物体的边缘形状。

下采样和池化应该是包含关系,池化属于下采样,而下采样不局限于池化,如果卷积 stride=2,此时也可以把这种卷积叫做下采样。

      相关帖子DA内容精选
  • 大厂数据分析面试指南!来自亚马逊、谷歌、微软、头条、美团的面试问题!

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群