英文标题:
《Portfolio optimization for a large investor controlling market sentiment
under partial information》
---
作者:
S\\\"uhan Altay, Katia Colaneri and Zehra Eksi
---
最新提交年份:
2017
---
英文摘要:
We consider an investor faced with the utility maximization problem in which the risky asset price process has pure-jump dynamics affected by an unobservable continuous-time finite-state Markov chain, the intensity of which can also be controlled by actions of the investor. Using the classical filtering theory, we reduce this problem with partial information to one with full information and solve it for logarithmic and power utility functions. In particular, we apply control theory for piecewise deterministic Markov processes (PDMP) to our problem and derive the optimality equation for the value function and characterize the value function as the unique viscosity solution of the associated dynamic programming equation. Finally, we provide a toy example, where the unobservable state process is driven by a two-state Markov chain, and discuss how investor\'s ability to control the intensity of the state process affects the optimal portfolio strategies as well as the optimal wealth under both partial and full information cases.
---
中文摘要:
我们考虑了一个投资者面临的效用最大化问题,其中风险资产价格过程具有受不可观测的连续时间有限状态马尔可夫链影响的纯跳跃动力学,其强度也可以由投资者的行为控制。利用经典滤波理论,我们将部分信息的问题简化为完全信息的问题,并对对数和幂效用函数进行求解。特别地,我们将分段确定马尔可夫过程(PDMP)的控制理论应用于我们的问题,推导出了值函数的最优性方程,并将值函数描述为相关动态规划方程的唯一粘性解。最后,我们提供了一个玩具示例,其中不可观测的状态过程由两状态马尔可夫链驱动,并讨论了投资者控制状态过程强度的能力如何影响部分和完全信息情况下的最优投资组合策略以及最优财富。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->