英文标题:
《An Optimal Execution Problem with S-shaped Market Impact Functions》
---
作者:
Takashi Kato
---
最新提交年份:
2017
---
英文摘要:
In this study, we extend the optimal execution problem with convex market impact function studied in Kato (2014) to the case where the market impact function is S-shaped, that is, concave on $[0, \\bar {x}_0]$ and convex on $[\\bar {x}_0, \\infty )$ for some $\\bar {x}_0 \\geq 0$. We study the corresponding Hamilton-Jacobi-Bellman equation and show that the optimal execution speed under the S-shaped market impact is equal to zero or larger than $\\bar {x}_0$. Moreover, we provide some examples of the Black-Scholes model. We show that the optimal strategy for a risk-neutral trader with small shares is the time-weighted average price strategy whenever the market impact function is S-shaped.
---
中文摘要:
在本研究中,我们将Kato(2014)研究的凸市场影响函数的最优执行问题扩展到市场影响函数为S形的情况,即,对于某些$\\bar{x}u 0\\geq 0$,在$[0,bar{x}u 0]$上凹,在$[\\bar{x}u 0,infty)$上凸。我们研究了相应的Hamilton-Jacobi-Bellman方程,并证明了在S形市场冲击下的最优执行速度等于零或大于$\\bar{x}_0$. 此外,我们还提供了Black-Scholes模型的一些例子。我们证明了当市场影响函数为S形时,风险中性的小股交易者的最优策略是时间加权平均价格策略。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
一级分类:Quantitative Finance 数量金融学
二级分类:Trading and Market Microstructure 交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
---
PDF下载:
-->