英文标题:
《Control-stopping Games for Market Microstructure and Beyond》
---
作者:
Roman Gayduk and Sergey Nadtochiy
---
最新提交年份:
2019
---
英文摘要:
In this paper, we present a family of a control-stopping games which arise naturally in equilibrium-based models of market microstructure, as well as in other models with strategic buyers and sellers. A distinctive feature of this family of games is the fact that the agents do not have any exogenously given fundamental value for the asset, and they deduce the value of their position from the bid and ask prices posted by other agents (i.e. they are pure speculators). As a result, in such a game, the reward function of each agent, at the time of stopping, depends directly on the controls of other players. The equilibrium problem leads naturally to a system of coupled control-stopping problems (or, equivalently, Reflected Backward Stochastic Differential Equations (RBSDEs)), in which the individual reward functions (or, reflecting barriers) depend on the value functions (or, solution components) of other agents. The resulting system, in general, presents multiple mathematical challenges due to the non-standard form of coupling (or, reflection). In the present case, this system is also complicated by the fact that the continuous controls of the agents, describing their posted bid and ask prices, are constrained to take values in a discrete grid. The latter feature reflects the presence of a positive tick size in the market, and it creates additional discontinuities in the agents reward functions (or, reflecting barriers). Herein, we prove the existence of a solution to the associated system in a special Markovian framework, provide numerical examples, and discuss the potential applications.
---
中文摘要:
在本文中,我们提出了一系列控制停止博弈,这些博弈自然出现在基于均衡的市场微观结构模型中,以及其他具有战略买家和卖家的模型中。这类博弈的一个显著特征是,代理没有任何外部给定的资产基本价值,他们从其他代理发布的买卖价格中推断出自己头寸的价值(即,他们是纯粹的投机者)。因此,在这种游戏中,每个代理在停止时的奖励功能直接取决于其他玩家的控制。均衡问题自然会导致一个耦合控制停止问题系统(或者,等效地,反射倒向随机微分方程(RBSDE)),其中,单个奖励函数(或者,反射屏障)取决于其他代理的值函数(或者,解分量)。通常,由于耦合(或反射)的非标准形式,由此产生的系统会带来多重数学挑战。在目前的情况下,代理的连续控制(描述其公布的出价和要价)被限制在离散网格中取值,这一事实也使该系统变得复杂。后一个特征反映了市场中存在正的刻度大小,并在代理奖励功能中产生了额外的不连续性(或反映障碍)。在此,我们在一个特殊的马尔可夫框架下证明了关联系统解的存在性,给出了数值例子,并讨论了潜在的应用。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->