英文标题:
《Financial Time Series Prediction Using Deep Learning》
---
作者:
Ariel Navon, Yosi Keller
---
最新提交年份:
2017
---
英文摘要:
In this work we present a data-driven end-to-end Deep Learning approach for time series prediction, applied to financial time series. A Deep Learning scheme is derived to predict the temporal trends of stocks and ETFs in NYSE or NASDAQ. Our approach is based on a neural network (NN) that is applied to raw financial data inputs, and is trained to predict the temporal trends of stocks and ETFs. In order to handle commission-based trading, we derive an investment strategy that utilizes the probabilistic outputs of the NN, and optimizes the average return. The proposed scheme is shown to provide statistically significant accurate predictions of financial market trends, and the investment strategy is shown to be profitable under this challenging setup. The performance compares favorably with contemporary benchmarks along two-years of back-testing.
---
中文摘要:
在这项工作中,我们提出了一种用于时间序列预测的数据驱动端到端深度学习方法,并将其应用于金融时间序列。本文推导了一个深度学习方案,用于预测纽约证券交易所或纳斯达克股票和ETF的时间趋势。我们的方法基于应用于原始财务数据输入的神经网络(NN),并经过训练以预测股票和ETF的时间趋势。为了处理基于佣金的交易,我们推导出一种投资策略,该策略利用
神经网络的概率输出,并优化平均回报。经证明,拟议方案能够对金融市场趋势提供具有统计意义的准确预测,并且在这种具有挑战性的环境下,投资策略是有利可图的。经过两年的回溯测试,其性能与当代基准测试相比是相当好的。
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term \"signal\" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
PDF下载:
-->