英文标题:
《Optimal Stochastic Decensoring and Applications to Calibration of Market
Models》
---
作者:
Anastasis Kratsios
---
最新提交年份:
2017
---
英文摘要:
Typically flat filling, linear or polynomial interpolation methods to generate missing historical data. We introduce a novel optimal method for recreating data generated by a diffusion process. The results are then applied to recreate historical data for stocks.
---
中文摘要:
通常采用平面填充、线性或多项式插值方法来生成缺失的历史数据。我们介绍了一种新的优化方法,用于重新创建由扩散过程生成的数据。然后将结果应用于重建股票的历史数据。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
PDF下载:
-->