一般跳跃扩散和其他指数所有过程的简单期权公式。可从获取http://www.optioncity.net, 2001.S、 T.Rachev、Y.S.Kim、M.L.Bianch和F.J.Fabozzi。具有L'evyprocess和波动率聚类的金融模型。John Wiley&Sons,2011年。五十、 罗杰斯。评估光谱单侧lvy过程的首次通过概率。《应用概率杂志》,37(4):1173–1180,12 2000。内政部:10.1239/jap/1014843099。W、 肖滕斯。利维金融流程。威利,2003年。T S过程及其应用的首次通过时间13表1:模型校准调用/输出模型参数AAE APE RMSECall BSσ=0.1267 3.3619 0.1042 4.1806NIGθ=5.1045,β=-0.3356,2.4056 0.0746 2.8746γ=0.1042NTSα=1.0808,θ=5.2150,2.3939 0.0742 2.8637β=-0.3647,γ=0.1010Gmmyα=0.7250,C=0.5019,2.4107 0.0747 2.8810λ+=73.5549,λ-= 11.5265输入BSσ=0.1396 3.5132 0.1507 4.3561NIGθ=4.2571,β=-0.3466,1.3995,0.0600,1.6910γ=0.0984NTSα=1.0980,θ=4.4348,1.3920,0.0597,1.6846β=-0.3864,γ=0.0930CGMYα=0.7066,C=0.4743,1.4006 0.0601 1.6957λ+=81.2931,λ-= 9.7529-5 0 500.050.10.150.20.250.30.350.40.450.5 stdNIG(1,-0.5)stdNIG(1,0.5)std BM0 5 10 15 20 25 3000.010.020.030.040.050.06 stdNIG(1,-0.5)stdNIG(1,0.5)std BMFig。1: 标准NIG分布的Pdf(左)和标准NIG过程的首次通过时间(右)。14 Young Shin Kim0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8-1.5-1.-0.500.511.50 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8-1.5-1.-0.500.511.5-0.2 0 0.2 0.4 0.6 0.8 1 1.2-0.4-0.3-0.2-0.100.10.20.30.4-0.2 0 0.2 0.4 0.6 0.8 1 1.2-0.4-0.3-0.2-0.100.10.20.30.4-500.050.10.150.20.250.30.350.40.45 stdNTS(1.25,1,-0.3)stdNTS(1.25,1,0.3)std BM0 5 10 15 20 25 3000.010.020.030.040.050.06 stdNTS(1.25,1,-0.3)stdNTS(1.25,1,0.3)std BMFig。