英文标题:
《Mean Reverting Portfolios via Penalized OU-Likelihood Estimation》
---
作者:
Jize Zhang, Tim Leung and Aleksandr Y. Aravkin
---
最新提交年份:
2018
---
英文摘要:
We study an optimization-based approach to con- struct a mean-reverting portfolio of assets. Our objectives are threefold: (1) design a portfolio that is well-represented by an Ornstein-Uhlenbeck process with parameters estimated by maximum likelihood, (2) select portfolios with desirable characteristics of high mean reversion and low variance, and (3) select a parsimonious portfolio, i.e. find a small subset of a larger universe of assets that can be used for long and short positions. We present the full problem formulation, a specialized algorithm that exploits partial minimization, and numerical examples using both simulated and empirical price data.
---
中文摘要:
我们研究了一种基于优化的方法来构建均值回复资产组合。我们的目标有三个:(1)设计一个由Ornstein-Uhlenbeck过程和最大似然估计的参数很好地代表的投资组合,(2)选择具有高均值回归和低方差的理想特征的投资组合,以及(3)选择一个节俭的投资组合,即从更大范围的资产中找到一小部分可用于多头和空头头寸。我们给出了完整的问题公式,一种利用部分极小化的特殊算法,以及使用模拟和经验价格数据的数值示例。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Statistics 统计学
二级分类:Machine Learning
机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
PDF下载:
-->