英文标题:
《Approximation of Some Multivariate Risk Measures for Gaussian Risks》
---
作者:
E. Hashorva
---
最新提交年份:
2018
---
英文摘要:
Gaussian random vectors exhibit the loss of dimension phenomena, which relate to their joint survival tail behaviour. Besides, the fact that the components of such vectors are light-tailed complicates the approximations of various multivariate risk measures significantly. In this contribution we derive precise approximations of marginal mean excess, marginal expected shortfall and multivariate conditional tail expectation of Gaussian random vectors and highlight links with conditional limit theorems. Our study indicates that similar results hold for elliptical and Gaussian like multivariate risks.
---
中文摘要:
高斯随机向量表现出维数损失现象,这与它们的联合生存尾行为有关。此外,这些向量的分量是轻尾的,这一事实使各种多变量风险度量的逼近变得非常复杂。在这篇文章中,我们推导了高斯随机向量的边际均值超额、边际期望短缺和多元条件尾部期望的精确近似,并强调了与条件极限定理的联系。我们的研究表明,类似的结果适用于椭圆和高斯型多变量风险。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
PDF下载:
-->