英文标题:
《Status maximization as a source of fairness in a networked dictator game》
---
作者:
Jan E. Snellman, Gerardo I\\~niguez, J\\\'anos Kert\\\'esz, R. A. Barrio
and Kimmo K. Kaski
---
最新提交年份:
2018
---
英文摘要:
Human behavioural patterns exhibit selfish or competitive, as well as selfless or altruistic tendencies, both of which have demonstrable effects on human social and economic activity. In behavioural economics, such effects have traditionally been illustrated experimentally via simple games like the dictator and ultimatum games. Experiments with these games suggest that, beyond rational economic thinking, human decision-making processes are influenced by social preferences, such as an inclination to fairness. In this study we suggest that the apparent gap between competitive and altruistic human tendencies can be bridged by assuming that people are primarily maximising their status, i.e., a utility function different from simple profit maximisation. To this end we analyse a simple agent-based model, where individuals play the repeated dictator game in a social network they can modify. As model parameters we consider the living costs and the rate at which agents forget infractions by others. We find that individual strategies used in the game vary greatly, from selfish to selfless, and that both of the above parameters determine when individuals form complex and cohesive social networks.
---
中文摘要:
人类的行为模式表现出自私或竞争,以及无私或利他的倾向,这两者都对人类社会和经济活动产生了明显的影响。在行为经济学中,这种影响传统上是通过独裁者和最后通牒等简单游戏进行实验来说明的。这些游戏的实验表明,除了理性的经济思维之外,人类的决策过程还受到社会偏好的影响,例如公平倾向。在这项研究中,我们建议,通过假设人们主要是最大化他们的地位,即不同于简单利润最大化的效用函数,可以弥合竞争和利他人类倾向之间的明显差距。为此,我们分析了一个简单的基于代理的模型,其中个人在他们可以修改的社交网络中重复玩独裁者游戏。作为模型参数,我们考虑生活成本和代理人忘记他人违规行为的比率。我们发现,游戏中使用的个人策略差异很大,从自私到无私,上述两个参数都决定了个人何时形成复杂而有凝聚力的社会网络。
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Multiagent Systems 多智能体系统
分类描述:Covers multiagent systems, distributed artificial intelligence, intelligent agents, coordinated interactions. and practical applications. Roughly covers ACM Subject Class I.2.11.
涵盖多Agent系统、分布式
人工智能、智能Agent、协调交互。和实际应用。大致涵盖ACM科目I.2.11类。
--
一级分类:Computer Science 计算机科学
二级分类:Computer Science and Game Theory 计算机科学与博弈论
分类描述:Covers all theoretical and applied aspects at the intersection of computer science and game theory, including work in mechanism design, learning in games (which may overlap with Learning), foundations of agent modeling in games (which may overlap with Multiagent systems), coordination, specification and formal methods for non-cooperative computational environments. The area also deals with applications of game theory to areas such as electronic commerce.
涵盖计算机科学和博弈论交叉的所有理论和应用方面,包括机制设计的工作,游戏中的学习(可能与学习重叠),游戏中的agent建模的基础(可能与多agent系统重叠),非合作计算环境的协调、规范和形式化方法。该领域还涉及博弈论在电子商务等领域的应用。
--
一级分类:Computer Science 计算机科学
二级分类:Social and Information Networks 社会和信息网络
分类描述:Covers the design, analysis, and modeling of social and information networks, including their applications for on-line information access, communication, and interaction, and their roles as datasets in the exploration of questions in these and other domains, including connections to the social and biological sciences. Analysis and modeling of such networks includes topics in ACM Subject classes F.2, G.2, G.3, H.2, and I.2; applications in computing include topics in H.3, H.4, and H.5; and applications at the interface of computing and other disciplines include topics in J.1--J.7. Papers on computer communication systems and network protocols (e.g. TCP/IP) are generally a closer fit to the Networking and Internet Architecture (cs.NI) category.
涵盖社会和信息网络的设计、分析和建模,包括它们在联机信息访问、通信和交互方面的应用,以及它们作为数据集在这些领域和其他领域的问题探索中的作用,包括与社会和生物科学的联系。这类网络的分析和建模包括ACM学科类F.2、G.2、G.3、H.2和I.2的主题;计算应用包括H.3、H.4和H.5中的主题;计算和其他学科接口的应用程序包括J.1-J.7中的主题。关于计算机通信系统和网络协议(例如TCP/IP)的论文通常更适合网络和因特网体系结构(CS.NI)类别。
--
一级分类:Quantitative Finance 数量金融学
二级分类:General Finance 一般财务
分类描述:Development of general quantitative methodologies with applications in finance
通用定量方法的发展及其在金融中的应用
--
---
PDF下载:
-->