英文标题:
《Game-theoretic derivation of upper hedging prices of multivariate
contingent claims and submodularity》
---
作者:
Takeru Matsuda, Akimichi Takemura
---
最新提交年份:
2018
---
英文摘要:
We investigate upper and lower hedging prices of multivariate contingent claims from the viewpoint of game-theoretic probability and submodularity. By considering a game between \"Market\" and \"Investor\" in discrete time, the pricing problem is reduced to a backward induction of an optimization over simplexes. For European options with payoff functions satisfying a combinatorial property called submodularity or supermodularity, this optimization is solved in closed form by using the Lov\\\'asz extension and the upper and lower hedging prices can be calculated efficiently. This class includes the options on the maximum or the minimum of several assets. We also study the asymptotic behavior as the number of game rounds goes to infinity. The upper and lower hedging prices of European options converge to the solutions of the Black-Scholes-Barenblatt equations. For European options with submodular or supermodular payoff functions, the Black-Scholes-Barenblatt equation is reduced to the linear Black-Scholes equation and it is solved in closed form. Numerical results show the validity of the theoretical results.
---
中文摘要:
我们从博弈论概率和子模块的角度研究了多元未定权益的上下套期保值价格。通过考虑离散时间内“市场”和“投资者”之间的博弈,将定价问题归结为单纯形上优化的反向归纳。对于支付函数满足子模性或超模性组合属性的欧式期权,通过使用Lov?asz扩展以闭合形式解决该优化问题,可以有效地计算套期保值价格的上限和下限。此类包括多个资产的最大或最小选项。我们还研究了当博弈轮数趋于无穷大时的渐近行为。欧式期权的上下套期保值价格收敛于Black-Scholes-Barenblatt方程的解。对于具有子模或超模支付函数的欧式期权,Black-Scholes-Barenblatt方程简化为线性Black-Scholes方程,并以闭合形式求解。数值结果表明了理论结果的有效性。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
一级分类:Computer Science 计算机科学
二级分类:Data Structures and Algorithms 数据结构与算法
分类描述:Covers data structures and analysis of algorithms. Roughly includes material in ACM Subject Classes E.1, E.2, F.2.1, and F.2.2.
涵盖数据结构和算法分析。大致包括ACM学科类E.1、E.2、F.2.1和F.2.2中的材料。
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
PDF下载:
-->