英文标题:
《Exit problem as the generalized solution of Dirichlet problem》
---
作者:
Yuecai Han, Qingshuo Song, Gu Wang
---
最新提交年份:
2019
---
英文摘要:
This paper investigates sufficient conditions for a Feynman-Kac functional up to an exit time to be the generalized viscosity solution of a Dirichlet problem. The key ingredient is to find out the continuity of exit operator under Skorokhod topology, which reveals the intrinsic connection between overfitting Dirichlet boundary and fine topology. As an application, we establish the sub and supersolutions for a class of non-stationary HJB (Hamilton-Jacobi-Bellman) equations with fractional Laplacian operator via Feynman-Kac functionals associated to $\\alpha$-stable processes, which help verify the solvability of the original HJB equation.
---
中文摘要:
本文研究了一个费曼-卡茨泛函在一个出口时间内是Dirichlet问题广义粘性解的充分条件。关键在于找出Skorokhod拓扑下出口算子的连续性,揭示了过拟合Dirichlet边界与精细拓扑之间的内在联系。作为应用,我们通过与$\\α$-稳定过程相关的Feynman-Kac泛函,建立了一类具有分数拉普拉斯算子的非平稳HJB(Hamilton-Jacobi-Bellman)方程的子解和上解,这有助于验证原HJB方程的可解性。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Mathematics 数学
二级分类:Analysis of PDEs 偏微分方程分析
分类描述:Existence and uniqueness, boundary conditions, linear and non-linear operators, stability, soliton theory, integrable PDE\'s, conservation laws, qualitative dynamics
存在唯一性,边界条件,线性和非线性算子,稳定性,孤子理论,可积偏微分方程,守恒律,定性动力学
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->