英文标题:
《Leave-One-Out Least Square Monte Carlo Algorithm for Pricing American
Options》
---
作者:
Jeechul Woo, Chenru Liu, Jaehyuk Choi
---
最新提交年份:
2020
---
英文摘要:
The least square Monte Carlo (LSM) algorithm proposed by Longstaff and Schwartz (2001) is widely used for pricing American options. The LSM estimator contains undesirable look-ahead bias, and the conventional technique of removing it necessitates doubling simulations. We present the leave-one-out LSM (LOOLSM) algorithm for efficiently eliminating look-ahead bias. We also show that look-ahead bias is asymptotically proportional to the regressors-to-simulation paths ratio. Our findings are demonstrated with several option examples, including the multi-asset cases that the LSM algorithm significantly overvalues. The LOOLSM method can be extended to other regression-based algorithms improving the LSM method.
---
中文摘要:
Longstaff和Schwartz(2001)提出的最小二乘蒙特卡罗(LSM)算法被广泛用于美式期权定价。LSM估计器包含不希望的前瞻偏差,而消除该偏差的传统技术需要加倍模拟。为了有效地消除前瞻性偏差,我们提出了一种留一LSM(LOOLSM)算法。我们还表明,前瞻偏差与回归器与模拟路径的比率渐近成正比。我们的发现通过几个选项示例进行了演示,包括LSM算法明显高估的多资产案例。LOOLSM方法可以扩展到其他基于回归的算法,以改进LSM方法。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
一级分类:Statistics 统计学
二级分类:Machine Learning
机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
PDF下载:
-->