英文标题:
《Practical Deep Reinforcement Learning Approach for Stock Trading》
---
作者:
Zhuoran Xiong, Xiao-Yang Liu, Shan Zhong, Hongyang Yang, and Anwar
Walid
---
最新提交年份:
2018
---
英文摘要:
Stock trading strategy plays a crucial role in investment companies. However, it is challenging to obtain optimal strategy in the complex and dynamic stock market. We explore the potential of deep reinforcement learning to optimize stock trading strategy and thus maximize investment return. 30 stocks are selected as our trading stocks and their daily prices are used as the training and trading market environment. We train a deep reinforcement learning agent and obtain an adaptive trading strategy. The agent\'s performance is evaluated and compared with Dow Jones Industrial Average and the traditional min-variance portfolio allocation strategy. The proposed deep reinforcement learning approach is shown to outperform the two baselines in terms of both the Sharpe ratio and cumulative returns.
---
中文摘要:
股票交易策略在投资公司中起着至关重要的作用。然而,在复杂、动态的股票市场中,如何获得最优策略是一个挑战。我们探索深度强化学习的潜力,以优化股票交易策略,从而实现投资回报最大化。我们选择了30只股票作为交易股票,并将其每日价格用作培训和交易市场环境。我们训练了一个深度强化学习代理,并获得了一个自适应的交易策略。对代理人的绩效进行了评估,并与道琼斯工业平均指数和传统的最小方差投资组合分配策略进行了比较。所提出的深度强化学习方法在夏普比率和累积收益方面均优于两条基线。
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Trading and Market Microstructure 交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
PDF下载:
-->