英文标题:
《Approximation of the first passage time distribution for the birth-death
processes》
---
作者:
Aleksejus Kononovicius, Vygintas Gontis
---
最新提交年份:
2019
---
英文摘要:
We propose a general method to obtain approximation of the first passage time distribution for the birth-death processes. We rely on the general properties of birth-death processes, Keilson\'s theorem and the concept of Riemann sum to obtain closed-form expressions. We apply the method to the three selected birth-death processes and the sophisticated order-book model exhibiting long-range memory. We discuss how our approach contributes to the competition between spurious and true long-range memory models.
---
中文摘要:
我们提出了一种获得生灭过程第一次通过时间分布近似值的一般方法。我们利用生灭过程的一般性质、Keilson定理和Riemann和的概念来获得闭式表达式。我们将该方法应用于三个选定的出生-死亡过程和显示长程记忆的复杂订单模型。我们将讨论我们的方法如何促进虚假和真实长程记忆模型之间的竞争。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Physics 物理学
二级分类:Physics and Society 物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--
---
PDF下载:
-->