英文标题:
《Asymptotics for volatility derivatives in multi-factor rough volatility
models》
---
作者:
Chloe Lacombe, Aitor Muguruza and Henry Stone
---
最新提交年份:
2020
---
英文摘要:
We present small-time implied volatility asymptotics for Realised Variance (RV) and VIX options for a number of (rough) stochastic volatility models via large deviations principle. We provide numerical results along with efficient and robust numerical recipes to compute the rate function; the backbone of our theoretical framework. Based on our results, we further develop approximation schemes for the density of RV, which in turn allows to express the volatility swap in close-form. Lastly, we investigate different constructions of multi-factor models and how each of them affects the convexity of the implied volatility smile. Interestingly, we identify the class of models that generate non-linear smiles around-the-money.
---
中文摘要:
通过大偏差原理,我们给出了许多(粗糙)随机波动率模型的实现方差(RV)和VIX期权的小时间隐含波动率渐近性。我们提供了数值结果以及计算速率函数的有效和稳健的数值方法;我们理论框架的支柱。基于我们的结果,我们进一步开发了RV密度的近似方案,这反过来又允许以闭合形式表示波动率互换。最后,我们研究了多因素模型的不同构造,以及它们各自如何影响隐含波动率微笑的凸性。有趣的是,我们确定了在金钱周围产生非线性微笑的模型类别。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->