英文标题:
《Copula estimation for nonsynchronous financial data》
---
作者:
Arnab Chakrabarti and Rituparna Sen
---
最新提交年份:
2020
---
英文摘要:
Copula is a powerful tool to model multivariate data. We propose the modelling of intraday financial returns of multiple assets through copula. The problem originates due to the asynchronous nature of intraday financial data. We propose a consistent estimator of the correlation coefficient in case of Elliptical copula and show that the plug-in copula estimator is uniformly convergent. For non-elliptical copulas, we capture the dependence through Kendall\'s Tau. We demonstrate underestimation of the copula parameter and use a quadratic model to propose an improved estimator. In simulations, the proposed estimator reduces the bias significantly for a general class of copulas. We apply the proposed methods to real data of several stock prices.
---
中文摘要:
Copula是一种强大的多变量数据建模工具。我们建议通过copula对多个资产的日内财务回报进行建模。问题源于日内财务数据的异步性质。在椭圆copula情形下,我们提出了相关系数的一致性估计,并证明了插入式copula估计是一致收敛的。对于非椭圆copula,我们通过Kendall的Tau来捕捉依赖关系。我们证明了copula参数的低估,并使用二次模型提出了一种改进的估计量。在仿真中,对于一类一般的copula,所提出的估计器显著减少了偏差。我们将所提出的方法应用于几个股票价格的实际数据。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
---
PDF下载:
-->