英文标题:
《An optimal transport problem with backward martingale constraints
motivated by insider trading》
---
作者:
Dmitry Kramkov and Yan Xu
---
最新提交年份:
2019
---
英文摘要:
We study a single-period optimal transport problem on $\\mathbb{R}^2$ with a covariance-type cost function $c(x,y) = (x_1-y_1)(x_2-y_2)$ and a backward martingale constraint. We show that a transport plan $\\gamma$ is optimal if and only if there is a maximal monotone set $G$ that supports the $x$-marginal of $\\gamma$ and such that $c(x,y) = \\min_{z\\in G}c(z,y)$ for every $(x,y)$ in the support of $\\gamma$. We obtain sharp regularity conditions for the uniqueness of an optimal plan and for its representation in terms of a map. Our study is motivated by a variant of the classical Kyle model of insider trading from Rochet and Vila (1994).
---
中文摘要:
我们研究了$\\ mathbb{R}^2$上的一个单周期最优运输问题,该问题具有协方差型成本函数$c(x,y)=(x\\u 1-y\\u 1)(x\\u 2-y\\u 2)$和后向鞅约束。我们证明了运输计划$\\ gamma$是最优的,当且仅当存在一个最大单调集$\\ gamma$支持$\\ gamma$的$\\ x$-边际,并且在$\\ gamma$的支持下,每$(x,y)$的$\\ c(z,y)$中$\\ c(x,y)=\\ min\\uz{in G}c(z,y)$。我们得到了最优规划唯一性及其在映射中表示的尖锐正则性条件。我们的研究是基于Rochet和Vila(1994)的经典Kyle内幕交易模型的一个变体。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Trading and Market Microstructure 交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
---
PDF下载:
-->