英文标题:
《Distributions of Historic Market Data -- Relaxation and Correlations》
---
作者:
M. Dashti Moghaddam, Zhiyuan Liu and R. A. Serota
---
最新提交年份:
2020
---
英文摘要:
  We investigate relaxation and correlations in a class of mean-reverting models for stochastic variances. We derive closed-form expressions for the correlation functions and leverage for a general form of the stochastic term. We also discuss correlation functions and leverage for three specific models -- multiplicative, Heston (Cox-Ingersoll-Ross) and combined multiplicative-Heston -- whose steady-state probability density functions are Gamma, Inverse Gamma and Beta Prime respectively, the latter two exhibiting \"fat\" tails. For the Heston model, we apply the eigenvalue analysis of the Fokker-Planck equation to derive the correlation function -- in agreement with the general analysis -- and to identify a series of time scales, which are observable in relaxation of cumulants on approach to the steady state. We test our findings on a very large set of historic financial markets data. 
---
中文摘要:
我们研究了一类随机方差均值回复模型中的松弛和相关性。我们推导了相关函数的闭式表达式,并利用了随机项的一般形式。我们还讨论了三种特定模型的相关函数和杠杆作用——乘法、Heston(Cox Ingersoll Ross)和组合乘法Heston——其稳态概率密度函数分别为Gamma、逆Gamma和Beta素数,后两种模型显示出“胖”尾。对于赫斯顿模型,我们应用福克-普朗克方程的特征值分析来推导相关函数(与一般分析一致),并确定一系列时间尺度,这些时间尺度在接近稳态时的累积量松弛过程中可以观察到。我们在一组非常大的历史金融市场数据上检验了我们的发现。
---
分类信息:
一级分类:Quantitative Finance        数量金融学
二级分类:Statistical Finance        统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Quantitative Finance        数量金融学
二级分类:Mathematical Finance        数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->