英文标题:
《Multivariate stable distributions and their applications for modelling
cryptocurrency-returns》
---
作者:
Szabolcs Majoros and Andr\\\'as Zempl\\\'eni
---
最新提交年份:
2018
---
英文摘要:
In this paper we extend the known methodology for fitting stable distributions to the multivariate case and apply the suggested method to the modelling of daily cryptocurrency-return data. The investigated time period is cut into 10 non-overlapping sections, thus the changes can also be observed. We apply bootstrap tests for checking the models and compare our approach to the more traditional extreme-value and copula models.
---
中文摘要:
在本文中,我们将已知的拟合稳定分布的方法推广到多元情况,并将所建议的方法应用于每日加密货币回报数据的建模。所调查的时间段被划分为10个不重叠的部分,因此也可以观察到变化。我们应用引导测试来检查模型,并将我们的方法与更传统的极值和copula模型进行比较。
---
分类信息:
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
PDF下载:
-->