assume that a comsumer has an income of $90 to spend on goods A and B and let the price of B be $2. What will be the consumer's demand for A as a function of the prices of A and/or B and income if his utility function is
u=logA+2logB?
一点思路都没有。大家帮帮忙
请注明:姓名-公司-职位
以便审核进群资格,未注明则拒绝
MUx/Px=MUy/Py,
所以,Px*X=2Py*Y,又因为Px*X+Py*Y=90
从而可以知道,用于购买X的金额为60,所以,X=60/Px。
我做出来PQ=30,不知道怎么回事,呵呵,我再看看
thanks
[此贴子已经被作者于2006-10-5 13:09:08编辑过]
我现在在美国读研究生,有很多东西不懂
是30吧,因为U=lna+2lnb ,根据相等边际原则,A,B边际效用相等时U有最大值
对lna,lnb分别取导数,1/a=2/b,所以有a=30,b=60
1-6楼统统读错了题目
What will be the consumer's demand for A as a function of the prices of A and/or B and income
就是求函数A=f(Pa,Pb,Y) A=f(Pb,Y)
consumer's demand 通常书上就是指一条函数了
设A的需求为X1,B为X2。则P1X1+P2X2=90,根据效用比例相等,1/X1P1=2/X2P2,所以,X2P2=2*X1P1代入P1X1+P2X2=90,得3X1P1=90。X1=30/P1。这是我的答案
我觉得直接从原始出发,用kuhn-tucker和拉格朗日法来做optimization好了……
完整过程应该是
max u=logA+2logB, s.t. Pa*A+Pb*B<=y y为收入
构造拉格朗日函数,列一阶条件,得到A,B的mashalian demand function
THANK YOU FOR HELPING ME
The teacher's answer: A=30/P