解
由于\[f(x,y)=xy\frac{x^2-y^2}{x^2+y^2}=r^2\sin \alpha \cos \alpha \frac{r^2\cos ^2\alpha-r^2\sin ^2\alpha}{r^2\cos ^2\alpha+r^2\sin ^2\alpha}=\frac{r^2}{4}\sin 4\alpha .(x=r\cos \alpha ,y=r\sin \alpha )\]因此\[|f(x,y)-f(0,0)|=|\frac{r^2}{4}\sin 4\alpha|=0,(r\rightarrow 0)\]\[函数f(x,y)在(0,0)连续.\]因为\[f_x(0,0)=\lim_{x\to0}\frac{f(x,0)-f(0,0)}{x-0}=0,同样,f_y(0,0)=0.\]故\[f_x(x,y)=\frac{y(x^4-y^4+4x^2y^2)}{(x^2+y^2)^2},(x,y\ne 0)\]\[f_y(x,y)=\frac{x(x^4-y^4-4x^2y^2)}{(x^2+y^2)^2},(x,y\ne 0)\]由于\[f_{xy}(0,0)=\lim_{y\to0}\frac{f_x(0,y)-f_x(0,0)}{y-0}=\lim_{y\to0}\frac{\frac{y(-y^4)}{y^4}-0}{y}=1,\]但\[f_{yx}(0,0)=\lim_{x\to0}\frac{f_y(x,0)-f_y(0,0)}{x-0}=\lim_{x\to0}\frac{\frac{x(-x^4)}{x^4}-0}{x}=-1,\]