1、解
\[\because \frac{n+i}{n}\sin \frac{i}{n^2}=\frac{n+i}{n}(\frac{i}{n^2}+o(\frac{1}{n^2}))=\frac{i}{n^2}+\frac{i^2}{n^3}+o(\frac{1}{n^2}).\]\[\begin{align*}\therefore \lim_{n\to\infty}\displaystyle\sum_{i=1}^{n}\frac{n+i}{n}\sin \frac{i}{n^2} &=\lim_{n\to\infty}\displaystyle\sum_{i=1}^{n}(\frac{i}{n^2}+\frac{i^2}{n^3}+o(\frac{1}{n^2})) \\
&=\displaystyle\sum_{i=1}^{n}(\frac{i}{n^2}+\frac{i^2}{n^3}) \\
&=\int_{0}^{1}xdx+\int_{0}^{1}x^2dx\\
&=\frac{1}{2}+\frac{1}{3}\\
&=\frac{5}{6}.
\end{align*}\]2、解
由于 \[\lim_{x\to+\infty}(\frac{x-a}{x+a})^x=\lim_{x\to+\infty}(1-\frac{2a}{x+a})^{\frac{x+a}{-2a}\cdotp (\frac{-2ax}{x+a})}=\lim_{x\to+\infty}e^{\frac{-2ax}{x+a}}=e^{-2a}.\]\[\begin{align*}\int_{a}^{+\infty}xe^{-2x}dx
&=-\frac{1}{2}xe^{-2x}|_a^{+\infty}+\frac{1}{2}\int_{a}^{+\infty}e^{-2x}dx \\
&=\frac{1}{2}ae^{-2a}-\frac{1}{4}e^{-2x}|_a^{+\infty} \\
&=\frac{1}{2}ae^{-2a}+\frac{1}{4}e^{-2a} .
\end{align*}\]而由条件,可知有\[e^{-2a}=\frac{1}{2}ae^{-2a}+\frac{1}{4}e^{-2a},\]\[a=\frac{3}{2}.\]3、解
\[\begin{align*}\int_{0}^{\frac{\pi}{2}}\frac{1}{1+\tan ^{2024}x}dx &=\int_{0}^{\frac{\pi}{2}}\frac{1+\tan ^{2024}x-\tan ^{2024}x}{1+\tan ^{2024}x}dx \\
&=\frac{\pi}{2}-\int_{0}^{\frac{\pi}{2}}\frac{\tan ^{2024}x}{1+\tan ^{2024}x}dx \\
&=\frac{\pi}{2}-\int_{0}^{\frac{\pi}{2}}\frac{\cos ^{2024}x}{\cos ^{2024}x+\sin ^{2024}x}dx,(x=\frac{\pi}{2}-x) \\
&=\frac{\pi}{2}-\int_{0}^{\frac{\pi}{2}}\frac{\sin ^{2024}x}{\cos ^{2024}x+\sin ^{2024}x}dx \\
&=\frac{\pi}{2}-\frac{1}{2}\int_{0}^{\frac{\pi}{2}}\frac{\cos ^{2024}x+\sin ^{2024}x}{\cos ^{2024}x+\sin ^{2024}x}dx\\
&=\frac{\pi}{4}.
\end{align*}\] 【注】:这是道经典竞赛题,源自苏联大学生数学竞赛。题中的指数与数值无关。