全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 Stata专版
6578 3
2012-01-11
           • You may wonder when you should use robust standard errors and when you should
use ordinary OLS standard errors.
          • The advantage of OLS standard errors is that t-tests using them are exact tests, as long
as the assumptions of the classical linear regression model are satisfied.
          • So OLS standard errors are better if you believe these assumptions are reasonable.
          • Robust standard errors are good if you have a large data set and you do not want to
rely on assumptions regarding the form of heteroskedasticity present.
          • On the other hand, if you have a small data set and you know heteroskedasticity is a
problem, your best option is to use WLS and transform the model to one where the
CLM assumptions hold.
           In a word,small data set ordinary OLS,big dada set Robust.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2012-1-12 06:33:05
For example, your regression model is y = a + bx1 + bx2.
First, run this regression model using the OLS by writing: regress y x1 x2
Second, perform the diagnostic check for your residuals. If you have detected heteroscedasticity, you should re-run your model by using the robust standard errors: regress y x1 x2, r

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-6-18 17:36:27
Thank  you very much! After read your comment I know smomething about  the  roubst。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-5-4 16:18:33
请问Heteroskedasticity-robust standard errors中文该如何翻译呢?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群