全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
27597 11
2012-02-26
本人初学计量,在推导普通最小二乘法公式时遇到一比较弱的问题,希望有会的人可以给讲一下!
首先是百度百科上的推导:


Y计= a0 + a1 X (式1-1)   其中:a0、a1 是任意实数   为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。   令:φ = ∑(Yi - Y计)2 (式1-2)   把(式1-1)代入(式1-2)中得:   φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)   当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。   (式1-4)   (式1-5)   亦即:   m a0 + (∑Xi ) a1 = ∑Yi (式1-6)   (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi,Yi) (式1-7)   得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:   a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)   a1 = [m∑Xi Yi - (∑Xi ∑Yi)] / [m∑Xi2 - (∑Xi)2 )] (式1-9)   这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。

我的问题是,式1-9是如何推出的,这也是教科书上没有说清楚的。

谢谢!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2012-2-26 04:26:25
觉得你写的有点乱,我说下,你看看对不对
上一步得到2个未知数a0,a1的两个方程,解肯定是a0与a1啊。二元一次方程组
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-2-26 04:28:26
其实本质是,误差项平方和最小,所以得到偏导a0后等于0与偏导a1后等于0的2个等式,然后二元一次方程组解得a0与a1。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-2-26 11:29:13
用代入消元法解上面提及的二元一次方程组就可以得到。计算量稍大。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-2-26 13:48:18
见下图。
OLS a1.jpg
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2014-12-2 15:55:52
wxdcherish 发表于 2012-2-26 13:48
见下图。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群