R2,t = beta1 + beta2(R2,t - R1,t) + et R1 R2分别是两个stock 的continouously return 以下是output,求解beta1=0.812060和 beta2=0.481493的interpretation是什么? 接着如何test 这个reression model是否robust to heteroskedaticity and autocorrelation ?怎样选择 appropriate set of standard erros for the model? 如果这里不好说明 可以加QQ2652759382。谢谢
| Dependent Variable: R2 | | |
| Method: Least Squares | | |
| Date: 04/11/12 Time: 00:37 | | |
| Sample (adjusted): 2003M02 2012M02 | |
| Included observations: 109 after adjustments | |
| | | | | |
| | | | | |
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| | | | | |
| | | | | |
| C | 0.812060 | 0.525272 | 1.545980 | 0.1251 |
| R2-R1 | 0.481493 | 0.056156 | 8.574212 | 0.0000 |
| | | | | |
| | | | | |
| R-squared | 0.407258 | Mean dependent var | 0.375142 |
| Adjusted R-squared | 0.401719 | S.D. dependent var | 7.056535 |
| S.E. of regression | 5.458134 | Akaike info criterion | 6.250269 |
| Sum squared resid | 3187.661 | Schwarz criterion | 6.299652 |
| Log likelihood | -338.6397 | Hannan-Quinn criter. | 6.270296 |
| F-statistic | 73.51712 | Durbin-Watson stat | 1.860658 |
| Prob(F-statistic) | 0.000000 | | | |