全部版块 我的主页
论坛 提问 悬赏 求职 新闻 读书 功能一区 悬赏大厅
2682 1
2012-05-03
悬赏 5 个论坛币 未解决
节约里程法的基本原理

  节约里程法的基本思路如下图,已知O点为配送中心,它分别向用户A和B送货。

  设O点到用户A和用户B的距离分别为a和b。用户A和用户B之间的距离为c,现有两种送货方案,如图下(a)和(b)所示。

  在上图(a)中配送距离为2(a+b);图上(b)中,配送距离为a+b+c。对比这两个方案,哪个更合理呢?这就要看哪个配送距离最小,配送距离越小,则说明方案越合理。由上图(a)中的配送距离,减去图1(b)中的配送距离可得出:

  2(a+b)-(a+b+c)=(2a+2b)-a-b-c=a+b-c(1)

  如果把上图(b)看成一个三角形,那么a、b、c则是这个三角形三条边的长度。由三角形的几何性质可知,三角形中任意两条边的边长之和,大于第三边的边长。因此,可以认定(1)式中结果是大于零的。

  即:a+b-c>0(2)

  由(2)式可知,(b)方案优于(a)方案,节约了(a+b-c)的里程,这种分析方案的优劣式的思想,就是节约里程法的基本思想。


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2012-5-3 20:13:37
会有人懂吗?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群