全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 LISREL、AMOS等结构方程模型分析软件
4939 3
2012-05-23
传统的方法存在种种不足,新的方法也在不断发展,其中最为研究者推崇的方法为多重填补(Multiple Imputation, MI)和极大似然估计(Allison, 2003; Graham, 2009; Schafer & Graham, 2002)。
极大似然估计
极大似然估计在处理缺失值数据时又称作全息极大似然估计(Full Information Maximum Likelihood, FIML),意指使用所有观测变量的全部信息。FIML同ML分析完整数据过程一样,只是在计算单个对数似然值时使用全部完整信息而不考虑缺失值(公示见,Enders, 2006, 2010)。因此,ML处理缺失值并非使用替代值将缺失填补,而是使用已知信息采用迭代的方式估计参数。FIML在MCAR和MAR下产生无偏和有效的参数估计值。当在非正态分布时,FIML需要使用同完整数据时的参数校正统计量(S-Bχ2等,见本章),Bootstrapping也是有效的策略之一。
FIML法包含辅助变量的分析使用Graham (2003)提出的饱和相关模型(Saturated Correlates),即将辅助变量纳入模型中,同时允许辅助变量间、辅助变量与外生观测指标以及内生观测指标的测量误差相关。

更多内容见我的博客。
http://blog.sina.com.cn/s/blog_7fb03f7d01012kv7.html
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2012-10-9 09:12:18
这是好贴,缺失值的处理方法需要好好注意。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-10-9 09:20:16
楼主的贴是好贴,也详细看了您blog中的相关内容,是否有用FIML或MI处理缺失值的stata命令?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-10-10 18:09:34
jiangbogz 发表于 2012-10-9 09:20
楼主的贴是好贴,也详细看了您blog中的相关内容,是否有用FIML或MI处理缺失值的stata命令?
很抱歉,目前只专注于Mplus,网上应该有Stata的命令
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群