数据挖掘应用之电子商务篇
首先,我们先来看三个成功的案例:
A.圣地亚哥的 Proflowers.com 通过采用 HitBox,即 WebSideStory 的数据挖掘ASP 服务,使企业的计划者在业务高峰日也能够对销售情况做出迅速反应。由于鲜花极易枯萎,Proflowers 不得不均匀地削减库存,否则可能导致一种商品过快地售罄或库存鲜花的凋谢。
由于日交易量较高,管理人员需要对零售情况进行分析,比如转换率,也就是多少页面浏览量将导致销售产生。举例来说,如果 100人中仅有 5 人看到玫瑰时就会购买,而盆景的转换率则为 100 比 20,那么不是页面设计有问题,就是玫瑰的价格有问题。公司能够迅速对网站进行调整,比如在每个页面上都展示玫瑰或降低玫瑰的价格。对于可能过快售罄的商品,公司通常不得不在网页中弱化该商 品或取消优惠价格,从而设法减缓该商品的销售。
采用 HitBox 的优势在于借助便于阅读的显示器来展现销售数据和转换率。Proflowers 营销副总裁 Chris d'Eon 说:"自己分析数据是浪费时间。我们需要一种浏览数据的方式,能够让我们即刻采取行动。"
B.丹佛的 eBags 旨在针对常旅客销售手提箱、手提袋、钱包以及提供其它旅行服务。该公司采用 Kana 软件公司的 E-Marketing Suite 来整合其网站的 Oracle 数据库、J.D. Edwards 财务系统、客户服务电子邮件和呼叫中心,从而获得客户购买行为习惯方面的信息。数据分析能够帮助公司确定是哪个页面导致了客户的高采购率,并了解是什么内容推动了销售。
eBags 技术副总裁 Mike Frazini 说:"我们尝试展示不同的内容,来观察哪些内容的促销效果。我们最终的目标是完全个性化。"与设计页面以鼓励大部分消费者采购的做法不同,一个个性化的解决方案将不停地创建页面以适合每个具体的访问者。因此,如果访问者的浏览记录显示其对手提包感兴趣,网站将创建突出这些商品的客户化页面。Frazini 指出,用于当前实施数据挖掘的分析方法也能用于部署自动化的网站定制规则。
寻找基于较少的数据和商业规则来创建个性化网页是客户化网站减少资源耗费的方法之一。
C.开利(Carrier)公司--位于美国康涅狄格州 Farmington 的一家空调制造厂商--声称,仅仅通过利用邮政编码数据,其升级版 B2C 网站的每位访问者所产生的平均收益在一个月内从 1.47 美元提高到了 37.42 美元。
当客户登录网站时,系统将指示他们提供邮政编码。这些邮政编码信息将被发送到 WebMiner 服务器,也就是一个数据挖掘ASP。然后,WebMiner 的数据挖掘软件将对客户进行假设,并基于这些假设来展示商品。例如,如果客户来自富裕的郊外地区,网站将显示出带有遥控器的空调机;如果客户的邮政编码显示邻近大量公寓楼,则弹出式广告将展示窗式空调机。
通过采用这种相对简易的方法,该公司能够在数秒内生成网页。Carrier 全球电子商务经理 Paul Berman 说:"与通常的想法相反,客户化电子商务在创建有针对性的服务时并不需要询问客户8条或9条信息。我们只需要 1 条信息,而且实际证明效果确实不错。"
电子商务的发展促使电子商务公司内部收集了大量的数据,
并且迫切需要将这些数据转换成有效的信息,为公司创造更多利润,
数据挖掘可以帮助你实现:
- 找到潜在客户:对已存在的访问者行为进行数据挖掘分类,当有新的访问者,根据之前数据挖掘结果对其进行分析,以确定是否为潜在客户
- 实现客户驻留:全面掌握客户浏览行为,知道客户兴趣需求,根据其需求做页面推荐
- 改进站点设计:根据访问者的信息特征设计网站结构和特征
- 进行市场预测:通过数据挖掘,可以分析客户的未来行为,容易评测市场投资回报率,降低企业运营成本
- 监控网络安全:分析网上银行、网上商店交易用户日志,防黑客攻击、恶意诈骗
学习数据挖掘,就在人大经济论坛数据挖掘培训,与您相约:
https://bbs.pinggu.org/thread-3387488-1-1.html