全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
16692 21
2012-07-01

一,北美一流统计学专业课程设置
大学的选择
根据可获得信息的实际情况,本课题主要考察美国的大学.对美国学校的选择,本文以美国较具权威的网站www.usnews.com所做的数理统计(mathematical statistics)全美排名的前十名大学和某国内网站的统计(statistics)专业排名(出处和年度不详)为依据(见附表).U.S.News所进行的排名,主要反映其学术优势(academic excellence).考察各大学的学术声誉,师资力量,学生选拔,资金状况及学生毕业状况等.通过设计一些客观标准,如:学术界内外的声誉排名,录取分数,科研经费,从事科研人员的总数和毕业生在职业考试和工作市场上的表现等;运用专家意见法,请大学的系主任和教员就他们熟悉的项目打分等方式对不同的专业进行排名.另外一家网站的排名,没有列明出处,据推测也应源于美国的调查机构,排名虽略有变动,但变化不大,也具有参考价值.因此,我们认为选取这些大学较具代表性.
www.usnews.com
全美数理统计排名
Math Specialties: Mathematical Statistic
1. University of California–Berkeley
2. Stanford University (CA)
3. University of Wisconsin–Madison
4. University of North Carolina–Chapel Hill
5. Harvard University (MA)
5. University of Chicago
7. Cornell University (NY)
7. Purdue University–West Lafayette (IN)
9. University of Washington
10. University of Michigan–Ann Arbor
统计(Statistics)
1 Standford Univ.
2 Univ. of California, Berkeley
3 Univ. of Chicago
4 Univ. of Wisconsin, Madison
5 Univ. of North Carolina
6 Cornell Univ.
7 Columbia Univ.
8 Harvard Univ.
9 Iowa State Univ.
10 Princeton Univ.
11 Purde Univ.
12 Univ. of California, Los Angeles
13 Univ. of Illinois at Urbana---Champaign
14 Univ. of Washington,Seattle
15 Yale Univ.
16 Carnegie Mellon Univ.
17 Colorado State Univ.
考虑两种排名,选取若干大学的统计学专业进行研究,他们包括:
加州大学伯克利分校(UC-Berkley),哈佛大学,威斯康星大学(Madison),北卡罗来那大学(Chapel Hill),芝加哥大学,华盛顿大学,加州大学洛杉矶分校(UCLA),密歇根大学,康奈尔大学,普渡大学(Purdue University–West Lafayette)等.由于宾夕法尼亚大学的统计学系设于沃顿商学院,因此也比较有借鉴意义.
加拿大的学校则选取了滑铁卢大学,多伦多大学.
课程描述的模式
对课程的描述,主要依据《统计学学科体系的构造与完善研究》课题组提出的理论统计学和应用统计学框架进行的.
理论统计学 应用统计学 统计史学 统计学其他学科
统计指标体系设计 ZF统计 统计思想史学 统计活动组织与管理
统计指数理论 企业统计 统计活动史学 统计法学
试验设计 经济计量学 比较统计研究
统计调查 金融统计 统计教育与统计培训
统计描述 保险精算
概率论 人口统计学
参数估计与假设检验 社会统计学
非参数估计 科学技术统计
稳健估计 天文统计
回归分析 地质统计生物统计
方差分析 生物统计
随机过程 气象统计
时间序列分析 生态与环境统计
多元分析 医学与卫生统计
贝叶斯统计 教育与心理计量学
决策论 统计质量控制
序贯分析 可靠性分析
空间统计 生存分析
统计计算 统计应用软件
理论统计学其他学科 应用统计学其他学科
具体课程描述
统计专业课程设置从某种意义上讲,不同的学校具有其自身的特色;但就其核心和框架却是大同小异.
我们认为,各学校的课程设置各有侧重,本科生和研究生的差异显著性也有所不同,还有另外一个客观原因,就是不同学校的课程介绍详细程度不同,因此,我们以每所学校的某一门课为基本单位,而没有对这些课程内容进行汇总和综合,从而避免了人为的(即使是无意识的)"扭曲".我们将有关课程设置的文本资料的原貌展现给读者,让读者根据自己的需要去进行加工,我们列出英文的原文,然后附上中文的翻译,可能有些翻译不够准确,也有一些术语,国内的翻译不够统一.因为这一问题超出了我们的讨论范围,所以,其中的译法仅供参考.
为了方便起见,我们设置了查询链接.
理论统计学 应用统计学 统计史学
试验设计 经济计量学 统计思想史学
统计调查 金融统计
统计描述 保险精算
概率论 人口统计学
参数估计与假设检验 社会统计学
非参数估计 科学技术统计
稳健统计 天文统计
回归分析 地质统计生物统计
方差分析 生物统计
随机过程 气象统计
时间序列分析 生态与环境统计
多元分析 医学与卫生统计
贝叶斯统计 教育与心理计量学
决策论 统计质量控制
序贯分析 可靠性分析
空间统计 生存分析
统计计算 统计应用软件
理论统计学其他学科 应用统计学其他学科
线性模型
数据分析
工商管理统计
统计方法综合课
理论统计
试验设计(Design of Experiments)
先修课:概率论,数理统计,回归分析

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2012-7-1 16:22:43
本科
UC-Berkley
Experimental Design -- Statistics (STAT) 232 [4 units]
Randomization, blocking, factorial design, confounding, fractional replication, response surface methodology, optimal design. Applications.
试验设计:随机化,区组设计,析因设计,混杂法, 部分重复, 反应曲面方法, 最优设计.以及应用.
哈佛大学:
[Statistics 140. Design of Experiments and Quasi-Experiments]
Statistical designs for the estimation of the effects of treatments in both controlled experiments and observational studies. Topics include randomization, blocking, fractional replication, covariance adjustment, subclassification, matched sampling, model-based adjustment.
Prerequisite: Statistics 100 and 139, or equivalent.
实验和准实验设计:观察性试验和控制性试验中的处理效果估计的统计设计.包括:随机化,区组设计,部分重复,协方差调整,次级分类,匹配抽样,基于模型的调整.
滑铁卢大学
STAT 332 F,S 3C 0.5
Sampling and Experimental Design
Designing sample surveys. Probability sampling designs. Estimation with elementary designs. Observational and experimental studies. Blocking, randomization, factorial designs. Analysis of variance. Designing for comparison of groups.
Prereq: STAT 231 or equivalent
抽样和实验设计:抽样调查设计.概率抽样设计.基本设计的估计.观察型和实验型研究.区组设计,随机化,析因设计.方差分析.组间对照的设计.
STAT 430 F,S 3C 0.5
Experimental Design
Review of experimental designs in a regression setting; analysis of variance; replication, balance, blocking, randomization, and interaction; one-way layout, two-way layout, and Latin square as special cases; factorial structure of treatments; covariates; treatment contrasts; two-level fractional factorial designs; fixed versus random effects; split-plot and repeated-measures designs; other topics.
Prereq: STAT 331 and 332, or consent of instructor
实验设计:在回归的背景下概述实验设计;方差分析;重复,平衡法,区组设计,随机化及交互作用;单向布置,双向布置,拉丁方设计;处理的析因结构,共变;双层部分析因设计;固定效果与随机效果;裂区设计与反复测量设计;及其它论题.
华盛顿大学
STAT 486 Experimental Design (3) NW
Topics in analysis of variance and experimental designs: choice of designs, comparison of efficiency, power, sample size, pseudoreplication, factor structure. Prerequisite: Q SCI 482; recommended: Q SCI 483. Offered: jointly with Q SCI 486.
实验设计:方差分析和试验设计专题:设计选择,效率比较,功效,样本规模,伪重复,因子结构.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-7-1 16:23:14
研究生
滑铁卢大学
STAT 830 Theory of Experimental Design S,F (0.5) 内容同STAT 430
实验设计理论:同上
芝加哥大学
345 DESIGN AND ANALYSIS OF EXPERIMENTS.
An introduction to the methodology and application of linear models in experimental design. A major focus of the course will be the basic principles of experimental design, such as blocking, randomization and incomplete layouts. Many of the standard designs, such as fractional factorial, incomplete block and split unit designs will be studied within this context. The analysis of these experiments will be developed as well, with particular emphasis on the role of fixed and random effects. Time permitting, additional topics may include response surface analysis, robust methods of analysis and the use of covariates in the analysis of designed experiments. PQ Statistics 343 and Statistics 245. Winter.
试验设计和分析:试验设计中线性模型的运用和方法介绍.集中介绍试验设计的基本原理,如:区组设计,随机化和不完整配置.学习许多标准的设计,如:部分析因设计,不完全区组设计和裂区设计.还将介绍试验分析.
华盛顿大学
STAT 577 Advanced Design and Analysis of Experiments (3)
Concepts important in experimental design: randomization, blocking, confounding. Application and analysis of data from randomized blocks designs, Latin and Greco-Latin squares, incomplete blocks designs, split-plot and repeated measures, factorial and fractional replicates, response surface experiments. Prerequisite: STAT 570 or STAT 421 (minimum grade 3.0), or permission of instructor. Offered: jointly with BIOST 577.
高等实验设计与分析:试验设计中的重要概念:随机化,区组设计,混杂法.随机区组设计数据的分析和应用,拉丁方和希腊拉丁方,不完整的区组设计,裂区设计和重复测量设计,析因和部分重复,反应曲面试验.
康奈尔大学
STENGR 575 Experimental Design (Enroll in OR&IE 575.) 2 credits. Weeks 8-14 (alternates with 576). Lecs. TR 8:40-9:55. Secs: W 12:20-2:15, R 2:30-4:25. Prerequisite: OR&IE 476. Instructor: R. Cleary. Randomization, blocking, sample size determination, factorial designs, 2^p full and fractional factorials, response surfaces, Latin squares, split plots, Taguchi designs. Engineering applications. Computing in MINITAB or SAS.
实验设计:随机化,区组设计,抽样规模的确定,析因设计.完全的和部分的析因设计,反应曲面法,拉丁方,裂区法,Taguchi设计.工程中的应用.用MINITAB或SAS计算.)
密歇根大学
Statistics 570: EXPERIMENTAL DESIGN
Prerequisite: Statistics 500, or permission. I. (3)
Basic topics and ideas in the design of experiments: randomization and randomization tests; the validity and analysis of randomized experiments; randomized blocks; Latin and Greco-Latin squares; plot techniques; factorial experiments; the use of confounding and response surface methodology; weighing designs, lattice and incomplete block and partially balanced incomplete block designs.
实验设计:试验设计的基本思想和论题:随机化和随机化检验;随机试验的效度与分析;随机区组设计;拉丁方和希腊拉丁方;制图技术;析因试验,混杂法和反应曲面法的运用;加权设计,方格设计和不完全区组设计,部分平衡的不完全区组设计.
北卡罗来那大学(下简称北卡大学 )
194- DESIGN AND ROBUSTNESS
Corequisite, Statistics 165. Design: Classical designs (BIB, Latin square, fractional factorial, industrial designs, Taguchi; Optimal designs: D-optimality, etc.; Sequential designs: sequential probability ratio test, Stein 2-stage. Robust methods: M-, L-, R-estimates, breakdown, influence curves; bootstrap, jackknife, cross-validation. Fall. Chakravarti, Marron (3)
设计与稳健性:传统的设计:BIB,拉丁方,部分析因设计,工业设计,Taguchi设计;最优设计:D-最优化,等;序贯设计:序贯概率比率估计检验,Stein两阶段法.稳健方法:M-估计,L-估计,R-估计,下分法,影响曲线;bootstrap,刀切法,交叉确认法.
211- SPECIAL TOPICS IN THE DESIGN OF EXPERIMENTS
Prerequisite, Statistics 150 or 194. Factorial experiments, construction and analysis of symmetrical, mixed, and fractional factorial designs. Orthogonal and balanced arrays. Response surface methodology. Mixture and screening designs. Optimality of designs. Recent developments. (3).
试验设计专题:析因设计,对称的,混合的和部分的析因设计的分析和构造.正交数组和平横数组.反应曲面法.混合和筛选设计.设计的最优化.新近发展.
212- COMBINATORIAL PROBLEMS OF THE DESIGN OF EXPERIMENTS
Prerequisite, Statistics 194. Finite groups, fields, and geometries. Difference sets. Orthogonal Latin squares, orthogonal arrays, balanced and partially balanced incomplete block designs. Algebras of association schemes and relations. Randomization, orthogonal designs, general balance and strata. Chakravarti. (3)
试验设计的组合问题:有限总体,现场设计,几何设计.差集.正交拉丁方,正交数组,平衡的和不平衡的不完全区组设计.关联方案和关联关系代数学.随机化,正交设计,一般的平衡和层.查询
统计调查(Sampling Surveys)
先修课:数理统计
本科
UC-Berkley
Sampling Surveys -- Statistics (STAT) 152 [4 units]
Description: Theory and practice of sampling from finite populations. Simple random, stratified, cluster, and double sampling. Sampling with unequal probabilities. Properties of various estimators including ratio, regression, and difference estimators. Error estimation for complex samples .
统计调查:有限总体抽样理论与实践.随机抽样,分层,整群,二重抽样,不等概抽样,包括比率估计在内的各种估计的性质,回归,差估计(difference estimators.),复杂样本的估计误差.
哈佛大学
[Statistics 160. Survey Methods]
Methods for design and analysis of sample surveys. Techniques for sample design, with examples from some widely used current surveys. Estimation methods (including calculation and use of sampling weights) and variance estimation methods (including resampling methods). Several guest lectures on nonstatistical aspects of survey methodology such as questionnaire design and validation. Other topics may include variance estimation for complex surveys and estimators, nonresponse, and small-area estimation.
调查方法:抽样调查设计和分析方法.包括抽样设计技术,估计方法(抽样权数的计算和运用)和方差估计法(再抽样方法),无回答问题,非抽样误差.调查方法的非统计问题客座讲座如:问卷设计与效度.其它问题如:复杂调查和复杂估计量的方差估计,无回答,小范围估计.
威斯康星大学
411 An Introduction to Sample Survey Theory and Methods. An elementary development of the statistical theory (and methods) used to design and analyze the results from sample surveys. Topics: basic tools, simple random sampling, ratio and regression estimation, stratification, systematic sampling, cluster (area) sampling, unequal probability sampling, sampling on successive occasions, non-sampling errors, analytical sample surveys. For illustration and clarification, examples drawn from diverse areas of application.
抽样调查理论方法介绍:应用于抽样调查设计和分析的统计理论和方法的基本发展.简单随机抽样,分层随机抽样,比率和回归估计,系统抽样,整群抽样,不等概率抽样,连续时机抽样,非抽样差和抽样调查分析.用各领域的实际例子进行说明.
宾夕法尼亚大学沃顿商学院
210. Sample Survey Design. (M)
An overview of survey design and methodology. Topics include questionnaire design, effects of question wording on responses, the sampling frame, simple random sampling, stratified sampling, longitudinal designs and panel methods, data collection, nonresponse bias and missing data, and applications.
抽样调查设计:调查设计和方法论综述. 包括:问卷设计,问卷措辞对回答的影响,抽样框,简单随机抽样,分层抽样,纵向设计和panel方法, 数据采集,无回答偏差与缺失数据.
密歇根大学
Statistics 480: Survey Sampling Techniques
Course will introduce students to basic ideas in survey sampling, moving from motivating examples to abstraction to populations, variables, parameters, samples and sample design, statistics, sampling distributions, Horvitz-Thompson estimators, basic sample designs (simple random, cluster, systematic, stratified, multiple state), various errors and biases, special topics. Three hours lecture and 1.5 hour laboratory session each week.
调查抽样技术:向学生介绍抽样调查的基本思想,从引人入胜的例子抽象出总体,变量,参数,样本和抽样设计,抽样分布.Horvitz-Thompson 估计,基本的抽样设计(简单随机抽样,整群抽样,系统抽样,分层抽样,多阶段抽样),各种误差和偏差.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-7-1 16:23:49
滑铁卢大学
STAT 454 W 3C 0.5
Sampling Theory and Practice
Sources of survey error. Probability sampling designs, estimation and efficiency comparisons. Distribution theory and confidence intervals. Generalized regression estimation. Software for survey analysis.
抽样理论和实践:调查误差的来源.概率抽样设计,估计和效率比较.分布理论和置信区间.广义回归估计.调查分析软件.
研究生
滑铁卢大学
STAT 854 Sampling Theory and Practice W (0.5)
Sources of survey error. Probability sampling designs, estimation and efficiency comparisons. Distribution theory and confidence intervals. Generalized regression estimation. Software for survey analysis.
抽样理论和实践:内容同本科.
芝加哥大学
331 SAMPLE SURVEYS (= Sociology 368). This course develops the classical techniques of Sample Surveys - random sampling methods, stratification, cluster sampling, ratio estimation, and elaborations of these ideas (systematic sampling, regression estimation) - with due attention to derivations and limitations. Methods for dealing with non-response and partial response (call-back schemes, imputation methods) will also be addressed. PQ Consent of Instructor. Autumn.
抽样调查:该课介绍抽样调查的传统技术——随机抽样方法,分层抽样,整群抽样,比率估计以及这些方法的深入(系统抽样,回归估计)——方法的推广和局限.无回答和部分回答问题的处理(在访问计划和迭代方法).
威斯康星大学
611 Sample Survey Theory and Method.
Simple random sampling; stratified random sampling; ratio and regression estimates; systematic sampling; subsampling with units of equal and unequal size; double sampling; multi-stage and multi-phase sampling; Bayesian and other approaches.
抽样调查理论与方法:简单随机抽样,分层随机抽样,比率和回归估计,系统抽样,等样本容量和不等样本容量次级抽样;双重抽样, 多阶段和多相抽样,贝叶斯及其它方法.
密歇根大学
Statistics 580 (Biostat 617, Soc 717): THEORY OF SAMPLING
Mathematical foundations of sampling finite populations. Simple random sampling; stratification ; ratio and regression estimates; systematic sampling, subsampling; cost functions and choice of optimal design; estimation procedures.
抽样理论:有限总体抽样的数学基础.简单随机抽样,分层抽样,比率和回归估计,系统抽样,次级抽样,成本函数与最优设计选择;估计过程.
Statistics 670: INTERMEDIATE SAMPLING THEORY
Recent developments in the foundations and methodology of sampling finite populations. Identifiability of units, likelihood of units, likelihood functions, admissibility of standard estimators, randomization, use of prior information in design and inference. Models for non-sampling errors including bias, response error and non-response. Other topics of current interest.
中级抽样理论:有限总体抽样的基础和方法论的最新发展.单位的识别,单位被抽中的可能性(likelihood of units,),似然函数,标准估计量的容许度,随机性,设计和推断中先验信息的使用,包含偏差,回答误差和无回答误差的非抽样误差模型.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-7-1 16:24:36
北卡大学
225- SUBSAMPLING TECHNIQUES
Prerequisite, Statistics 165. Basic subsampling concepts: replicates, empirical c.d.f., U-statistics. Subsampling for i.i.d. data: jackknife, typical-values, bootstrap. Subsampling for dependent or nonidentically distributed data: blockwise and other methods. Carlstein. (3).
次级抽样:次级抽样基本概念;重复抽样,经验c.d.f,U统计量.i.i.d.数据的次级抽样:刀切法,典型值,bootstrap.非独立或分布不一致数据的次级抽样:顺时针法或其他方法.
华盛顿大学
STAT 403 Introduction to Resampling Inference (4) NW
Introduction to computer-intensive data analysis for experimental and observational studies in empirical sciences. Students design, program, carry out, and report applications of bootstrap resampling, rerandomization, and subsampling of cases.
再抽样(Resampling)推断介绍:介绍经验科学中试验性研究和观测性研究的计算机密集型数据的分析.应用bootstrap再抽样,再随机化和次级抽样的案例,学生进行设计,编程,实施并完成报告.
STAT 529 Sample Survey Techniques (3)
Design and implementation of selection and estimation procedures. Emphasis on human populations. Simple, stratified, and cluster sampling; multistage and two-phase procedures; optimal allocation of resources; estimation theory; replicated designs; variance estimation; national samples and census materials. Prerequisite: STAT 421, STAT 423, QMETH 500 or BIOST 511 or equivalent; or permission of instructor.
抽样调查技术:选样和估计过程的设计和实施.侧重于人口调查.简单抽样,分层成员,整群抽样;多阶段和两相抽样;资源的最优配置;估计理论;重复抽样设计;方差估计;全国抽样和普查资料.
查询
概率论(Theory of Probability)
先修课:微积分,线性代数
本科
UC-Berkley
Introduction to the Theory of Probability -- Statistics (STAT) 101
Description: Random variables and their distributions, expectation, univariate models, central limit theorem, statistical applications, dependence, multivariate normal distribution, conditioning, simulation, and other computer applications.
概率论导论:随机变量及其分布,期望,单变量模型,中心极限定理,统计应用,非独立性,多元正态分布,建立条件(conditioning,),模拟,其它计算机应用.
Concepts of Probability -- Statistics (STAT) 134
Description: An introduction to probability, emphasizing concepts and applications. Conditional expectation, independence, laws of large numbers. Discrete and continuous random variables. Central limit theorem. Selected topics such as the Poisson process, Markov chains, characteristic functions.
概率思想:概率论介绍,强调思想和应用.条件期望,独立性,大数法则,离散的和连续的随机变量,中心极限定理,选择性内容:泊松过程,马尔可夫链,特征函数.
Probability Theory -- Statistics (STAT)205A
Prerequisites: Some knowledge of real analysis and metric spaces, including compactness, Riemann integral. Knowledge of Lebesgue integral and/or elementary probability is helpful, but not essential, given otherwise strong mathematical background.
Description: Measure theory concepts needed for probability. Expectation, distributions. Laws of large numbers and central limit theorems for independent random variables. Characteristic function methods. Conditional expectations; martingales and theory convergence. Markov chains. Stationary processes.
概率论:概率论所需的测度论概念.期望,分布.大数法则和中心极限定理.特征函数方法.条件期望;鞅和理论收敛.马氏链.平稳过程.
宾夕法尼亚大学沃顿商学院
430. Probability. (C) Staff. Prerequisite(s): MATH 141 or equivalent.
Discrete and continuous sample spaces and probability; random variables, distributions, independence; expectation and generating functions; Markov chains and recurrence theory.
概率论:离散的和连续的抽样空间和概率,随机变量,分布,独立,期望和生成函数马氏链和常返理论.
密歇根大学
Statistics 425/Mathematics 425: Introduction to Probability
Basic concepts of probability; expectation, variance, covariance; distribution functions; and bivariate, marginal, and conditional distributions.
概率论引论:概率的基本概念;期望,方差,协方差,分布函数,二元分布,边缘分布和条件分布.
Statistics 430: Applied Probability
Prerequisites: Statistics 425 or equivalent. (4). II. (MSA). Review of probability theory; introduction to random walks; counting and Poisson processes; Markov chains in discrete and continuous time; equations for stationary distributions; introduction to Brownian motion. Selected applications such as branching processes, financial modeling, genetic models, the inspection paradox, inventory and queuing problems, prediction, and/or risk analysis. Selected topics such as hidden Markov chains, martingales, renewal theory, and/or stationary process. Three hours lecture each week.
应用概率:概率论综述;随机游走;计数和泊松过程;离散和连续时间上的马尔可夫链;平稳分布方程;布朗运动介绍;应用:分枝过程,金融建模,基因模型,存贮问题和排队问题,预测,风险分析.选择性论题,如:隐性马氏链,鞅,更新理论,平稳过程.
华盛顿大学
STAT 394 Probability I (3) NW
Sample spaces; basic axioms of probability; combinatorial probability; conditional probability and independence; binomial, Poisson and normal distributions, central limit theorem. Prerequisite: either 2.0 in MATH 126, 2.0 in MATH 129, or 2.0 in MATH 136; recommended: MATH 324 or MATH 327. Offered: jointly with MATH 394; AWS.
概率论I:样本空间;概率论基本定理;组合概率;条件概率与独立性;二项分布,泊松分布和正态分布.中心极限定理.
STAT 395 Probability II (3) NW
Random variables; expectation and variance; laws of large numbers; normal approximation and other limit theorems; multidimensional distributions and transformations. Prerequisite: STAT/MATH 394. Offered: jointly with MATH 395;
概率论II:随机变量;期望和方差;大数法则;正态近似和其他极限定理;多维分布和变换.
STAT 396 Probability III (3) NW
Characteristic functions and generating functions; recurrent events and renewal theory; random walk. Prerequisite: either 2.0 in MATH 395 or 2.0 in STAT 395. Offered: jointly with MATH 396; Sp.
概率论III:特征函数和生成函数;常返事件和更新理论;随机游走.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-7-1 16:25:16
研究生
UCLA
M220A-M220B. Applied Probability. (4-4)
Lecture, three hours. Requisite: course M100A or Mathematics M170A. S/U or letter grading. M220A. Conditioning, Markov chains, Poisson process, Brownian motion, stationary processes, applications. M220B. Simulation, renewal theory, martingale, and selected topics from queuing, reliability, speech recognition, computational biology, mathematical finance, epidemiology.
应用概率论:(A)马氏链,泊松过程,布朗运动,平稳过程及其应用.(B)模拟,更新理论,鞅,及选择性论题如:排队论,可靠性,语音识别,计算生物学,数理金融,流行病学.
宾夕法尼亚大学沃顿商学院
430. Probability. (C) Staff. Prerequisite(s): MATH 141 or equivalent.
Discrete and continuous sample spaces and probability; random variables, distributions, independence; expectation and generating functions; Markov chains and recurrence theory.
概率论:离散的和连续的抽样空间和概率,随机变量,分布,独立,期望和生成函数马氏链和常返理论.
530. Probability. (A) Steele. Prerequisite(s): STAT 430 or 510 or equivalent.
Measure theory and foundations of Probability theory. Zero-one Laws. Probability inequalities. Weak and strong laws of large numbers. Central limit theorems and the use of characteristic functions. Rates of convergence. Introduction to Martingales and random walk.
概率论(A):测度论和概率论基础.0-1律.概率不等式.强,弱大数定律.中心极限定理和特征函数应用.收敛律.鞅和随机游走介绍.
531. Probability. (B) Steele. Prerequisite(s): STAT 530.
Markov chains, Markov processes, and their limit theory. Renewal theory. Martingales and optimal stopping. Stable laws and processes with independent increments. Brownian motion and the theory of weak convergence. Point processes.
概率论(B):马尔可夫链,马尔可夫过程,及其极限理论.更新理论.鞅,最优停步. 独立增量过程和稳定法则.布朗运动和弱收敛力量.点过程.
900. Advanced Probability. (M) Staff. Prerequisite(s): STAT 531 or equivalent.
The topics covered will change from year to year. Typical topics include the theory of large deviations, percolation theory, particle systems, and probabilistic learning theory.
高等概率论:大偏差理论,渗透理论,粒子系统,概率学习理论.
UC-Berkley
Introduction to Probability and Statistics at an Advanced Level -- Statistics(STAT)200A[4units]
Description: Probability spaces, random variables, distributions in probability and statistics, central limit theorem, Poisson processes, transformations involving random variables, estimation, confidence intervals, hypothesis testing, linear models, large sample theory, categorical models, decision theory.
高等概率论与统计:概率空间,随机变量,概率分布与统计分布,中心极限定理,泊松过程,随机变量的变换,估计,置信区间,线性模型假设检验,大样本理论,类别模型,决策论.
密歇根大学
Statistics 525 (Math 525): PROBABILITY THEORY
Prerequisites: Mathematics 450 or 451, or permission. (3)
This course covers basic topics in probability, including: random variables, distributions, conditioning, independence, expectation and generating functions, special distributions and their relations, transformations, non-central distributions, the multivariate normal distribution, convergence concepts, and limit theorems. Other possible topics: random walks, Markov chains, martingales.
概率论:随机变量,分布,条件,独立,期望和生成函数,特殊分布及其联系,变幻,非中心分布,多元正态分布,收敛观念,极限定理.随机游走,马尔可夫链,鞅.
Statistics 620: THEORY OF PROBABILITY I
Prerequisite: Mathematics 451 or equivalent. I. (3)
Basics of probability at an advanced level. Specific topics include: discrete probability spaces, the weak law of large numbers, the de Moivre-Laplace theorems, classes of sets, algebras, measures, extension of measures, countable additivity and Lebesgue and product measures. Also: measurable functions, random variables, conditional probability, independence, the Borel-Cantelli lemmas and the zero-one law. The course will additionally cover: integration, convergence theorems, inequalities, Fubini's theorem, the Radon-Nikodym theorem, distribution functions, expectations, and the strong law of large numbers.
概率论I:离散的概率空间, 弱大数定律,Moivre-Laplace 理论, 集合的类, 代数, 测度,测度的扩张, 可列可加性和Lebesgue测度及乘积测度.也包括:可测函数,随机变量,条件概率,独立, the Borel-Cantelli lemmas 和0-1律.还包括: 积分, 收敛理论,不等式,Fubini's 理论, Radon-Nikodym 理论,分布函数,期望和强大数定律.
Statistics 621: THEORY OF PROBABILITY II
Prerequisite: Statistics 620. II. (3)
A continuation of Statistics 620. Topics covered include: weak convergence, characteristic functions, inversion, unicity and continuity, the central limit theorem for sequences and arrays aud, extensions to higher dimensions. Also: the renewal theorem, conditional probability and expectation, regular conditional distributions, stationary sequences aud the bergodic theorem, martingales, and the optimal stopping theorem. The course will also cover: the Poisson process, Brownian motion, the strong Markov property and the invariance principle.
概率论II:概率论I的继续课.包括:弱收敛,特征函数,逆转,单一性和连续性,序列和排列的中心极限定理及其高维扩展.更新理论,条件概率和期望,规则的条件分布,平稳序列和bergodic定理,鞅,最优停步理论.泊松过程,布朗运动,强马尔可夫性和不变原则.
Statistics 628, 629: PROBABILITY
Prerequisite: Statistics 625. 628, I; 629, II. (3 each)
Special topics in probability theory - for example: infinitely divisible laws; foundations of time series; diffusion processes; stochastic differential equations. The course(s) will study a few topics in detail.
概率论: 概率论专题,如:无限可分法则;时间序列基础;扩散过程;随机微分方程.该课将详细学习一些专题.
Statistics 630: TOPICS IN APPLIED PROBABILITY
Prerequisite: Statistics 526 or Statistics 626. I. (3)
Advanced topics in applied probability, such as queueing theory, inventory problems, branching processes, stochastic difference and differential equations, etc. The course will study one or two advanced topics in detail.
应用概率论专题:应用概率高级专题,如:排队论,存贮问题,分枝过程,随机微分和差分方程等.本课将详细学习一到两个专题.
芝加哥大学
304. Distribution Theory. PQ: Stat 245 and Math 205, or consent of instructor. This course covers methods of deriving, characterizing, displaying, approximating, and comparing distributions. Topics include algebra by computer (Maple and Macsyma), standard distributions (uniform, normal, beta, gamma, F, t, Cauchy, Poisson, binomial, and hypergeometric), moments and cumulants, characteristic functions, exponential families, the Pearson system, Edgeworth and saddlepoint approximations, and Laplace's method. Staff. Autumn.
分布理论:包括:分布的推导,特征化,展示,近似和比较.专题包括:计算机代数((Maple 和Macsyma),标准分布(均匀分布,正态分布,β分布,Γ分布,F分布,t分布,柯西分布,泊松分布,二项分布和超几何分布),矩和累差,特征函数,指数族,皮尔森系统, Edgeworth逼近法,鞍点逼近法和Laplace法.
381. Measure-Theoretic Probability I. PQ: Stat 313 or consent of instructor.
A detailed, rigorous treatment of probability from the point of view of measure theory, as well as existence theorems, integration and expected values, characteristic functions, moment problems, limit laws, Radon-Nikodym derivatives, and conditional probabilities.
测度概率论:从测度论的角度研究概率论,存在理论,积分和期望值,特征函数,矩问题,极限法则,Radon-Nikodym导数,条件概率.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群