全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
13131 4
2007-05-23

各位前辈,请帮忙小弟,有没有  超越对数成本函数的 详细说明:包括 各参数的意义.应用该函数进行多元产出成本以及范围经济的应用限制?

麻烦各位了.很急!

小弟谢过各位.

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2007-5-24 08:57:00

Check

Egwald Economics: Microeconomics (http://www.egwald.com/economics/translogproduction.php)

Production Functions

by

Elmer G. Wiens

Cobb-Douglas | CES | Translog | Diewert | Translog vs Diewert | Diewert vs Translog | Estimate Translog | Estimate Diewert | References and Links

With the Cobb-Douglas and CES production functions, I obtained an explicit cost function, total cost as a function of q, wL, wK, and wM, by minimizing the cost of producing a given level of output. Because the Translog production function is much more general (it has a flexible functional form permitting the partial elasticities of substitution between inputs to vary), I will use numerical analysis to obtain the cost functions associated with a given Translog production function. With the Translog production function, the elasticity of scale can vary with output and factor proportions, permitting its long run average cost curve to take the traditional U-shape.

C. Translog (Transcendental Logarithmic) Production Function

The three factor Translog production function is:

ln(q) = ln(A) + aL*ln(L) + aK*ln(K) + aM*ln(M) + bLL*ln(L)*ln(L) + bKK*ln(K)*ln(K) + bMM*ln(M)*ln(M)
+ bLK*ln(L)*ln(K) + bLM*ln(L)*ln(M) + bKM*ln(K)*ln(M) = f(L,K,M).

where L = labour, K = capital, M = materials and supplies, and q = product.

I. Constant returns to scale:

aL + aK +aM = 1
-2*bLL = bLK + bLM
-2*bKK = bLK + bKM
-2*bMM = bLM + bKM

II. To get estimates for the parameters of the Translog production function, I generated a set of 182 observations (output, factor inputs, factor prices) from a constant returns to scale CES production function, with the

elasticity of scale = 1.0, and

elasticity of substitution = .85.

and alpha = .35, beta = .4, and gamma = .25, varying the level of output and the factor prices.

III. Estimating the translog production function using multiple regression yielded the following coefficient estimates:

lnA = 0 aL = 0.349891 aK = 0.399994 aM = 0.250116
bLL = -0.019665 bKK = -0.021336 bMM = -0.016437
bLK = 0.024565 bLM = 0.014766 bKM = 0.018108

R2 = 1.0 all |t-values| >> 2

Note that this procedure can be used for any set of estimated coefficients, provided we can use the resulting production function in solving, numerically, the least-cost problem below.

IV. Least-cost combination of inputs

Find the values of L, K, M, and µ that minimize the Lagrangian:

G(q;L,K,M,µ) = wL * L + wK * K + wM* M + µ * [q - exp(f(L,K,M))]

  1. GL = wL - µ * fL * exp(f(L,K,M)) = 0
  2. GK = wK - µ * fK * exp(f(L,K,M)) = 0
  3. GM = wM - µ * fM * exp(f(L,K,M)) = 0
  4. Gµ = q - * exp(f(L,K,M)) = 0

To solve equations a. to d., numerically, for given q, wL, wK, and wM, I used the first order conditions a. to d. and the associated Jacobian:

J = GLL GLK GLM G
GKL GKK GKM G
GML GMK GMM G
GµL GµK GµM Gµµ

V. Suppose the firm buys its inputs at the prices:

wL = 7 wK = 13 wM = 6

Solving the least-cost problem yields, noting that µ = marginal cost:

Translog Long Run Cost Data
Constant Returns to Scale
Elasticity of Substitution = .85
q est q L K M total cost ave. cost marg. cost sLK sLM sKM
20 19.99 22.7 16.96 21.91 510.87 25.54 26.79 0.84 0.84 0.85
22 22 24.92 18.7 24.13 562.26 25.56 26.82 0.84 0.84 0.85
24 24 27.12 20.42 26.35 613.42 25.56 26.86 0.84 0.84 0.85
26 26 29.33 22.15 28.57 664.63 25.56 26.9 0.84 0.84 0.85
28 28 31.53 23.88 30.79 715.89 25.57 26.92 0.84 0.84 0.85
30 30.01 33.71 25.61 33.04 767.2 25.57 26.95 0.84 0.84 0.85
32 31.99 35.9 27.33 35.24 818.02 25.56 27 0.84 0.84 0.85
34 33.99 38.08 29.06 37.48 869.18 25.56 27.03 0.84 0.84 0.85
36 36 40.26 30.8 39.72 920.54 25.57 27.05 0.84 0.84 0.85
38 38.01 42.43 32.56 41.97 972.08 25.58 27.06 0.84 0.84 0.86
40 39.99 44.61 34.28 44.17 1022.92 25.57 27.11 0.84 0.84 0.86

The Allen partial elasticities of substitution, sLK, sLM, and sKM,are all approximately equal to .85 as expected.

VI. Short Run: Capital Fixed.

If we set capital at the least cost level for q = 30, then K = 25.614838677156

Using the same method as for the long run cost curves, we get:

Translog Short Run Cost Data
Constant Returns to Scale
Elasticity of Substitution = .85
q est q L K M total cost ave. cost marg. cost 3 factor
sLM
2 factor
sLM
20 20 17.41 25.61 16.57 554.34 27.72 19.22 0.85 0.85
22 22 20.28 25.61 19.44 591.56 26.89 20.73 0.85 0.85
24 24 23.31 25.61 22.53 631.35 26.31 22.25 0.85 0.85
26 26 26.57 25.61 25.83 673.96 25.92 23.8 0.84 0.84
28 28 30.02 25.61 29.33 719.08 25.68 25.37 0.84 0.84
30 30 33.64 25.61 33.09 767 25.57 26.95 0.84 0.84
32 31.99 37.48 25.61 37.03 817.49 25.55 28.56 0.83 0.84
34 34 41.53 25.61 41.24 871.11 25.62 30.16 0.83 0.84
36 35.99 45.72 25.61 45.65 926.99 25.75 31.82 0.83 0.84
38 38 50.14 25.61 50.34 985.99 25.95 33.48 0.82 0.83
40 40 54.74 25.61 55.25 1047.7 26.19 35.18 0.82 0.83

So, now again we get a U-shaped, short run average cost curve, with capital fixed.

The short run average cost curve is (approx.) tangent to the long run average cost curve, at q = 30.

Here I have listed two measures of the short-run elasticity of substitution between L and M. The 3-factor measure of sLM uses the Allen partial elasticity of substitution formula. The 2-factor measure of sLM uses the standard short-run formula, which assumes that only L and M can vary with output, with a fixed amount of capital present. Another option would be to estimate a two factor production function q = F(L,M), and then to compute sLM. But then capital, K, is a missing variable from the estimation, skewing the estimates of the coefficients of the production function F

VII. Elasticity of substitution = 1

elasticity of scale = 1.0, and

elasticity of substitution = 1.0

and alpha = .35, beta = .4, and gamma = .25.

The CES production function collapses into the Cobb-Douglas production function.

lnA = 0 aL = 0.35 aK = 0.45 aM = 0.25
bLL = 0 bKK = 0 bMM = 0
bLK = 0 bLM = 0 bKM = 0

R2 = 1.0

Translog Long Run Cost Data
Constant Returns to Scale
Elasticity of Substitution = 1.0
q est q L K M total cost ave. cost marg. cost sLK sLM sKM
20 20 21.16 14.67 17.71 445.17 22.26 21.21 1 1 1
22 22 23.17 16.07 19.4 487.45 22.16 21.11 1 1 1
24 24 25.16 17.47 21.09 529.74 22.07 21.02 1 1 1
26 26 27.15 18.85 22.76 571.68 21.99 20.94 1 1 1
28 28 29.14 20.23 24.42 613.47 21.91 20.86 1 1 1
30 29.99 31.11 21.59 26.07 654.88 21.83 20.81 1 1 1
32 31.99 33.08 22.97 27.71 696.4 21.76 20.75 1 1 1
34 34 35.04 24.35 29.36 738.02 21.71 20.68 1 1 1
36 35.99 37.01 25.7 30.98 779.09 21.64 20.64 1 1 1
38 38 38.94 27.09 32.62 820.48 21.59 20.58 1 1 1
40 40 40.89 28.46 34.23 861.57 21.54 20.53 1 1 1

VIII. Short Run: Capital Fixed.

If we set capital at the least cost level for q = 30, then K = 21.59291216252

Translog Short Run Cost Data
Constant Returns to Scale
Elasticity of Substitution = 1.0
q est q L K M total cost ave. cost marg. cost 3 factor
sLM
2 factor
sLM
20 20 15.87 21.59 13.24 471.22 23.56 15.87 1 1
22 22 18.6 21.59 15.51 503.96 22.91 16.91 1 1
24 24 21.5 21.59 17.95 538.88 22.45 17.92 1 1
26 26 24.56 21.59 20.52 575.74 22.14 18.9 1 1
28 28 27.78 21.59 23.2 614.37 21.94 19.87 1 1
30 30 31.16 21.59 26.03 655.04 21.83 20.8 1 1
32 32 34.71 21.59 29.01 697.69 21.8 21.7 1 1
34 34 38.38 21.59 32.09 741.86 21.82 22.62 1 1
36 35.99 42.19 21.59 35.31 787.89 21.89 23.5 1 1
38 37.99 46.18 21.59 38.62 835.71 21.99 24.36 1 1
40 40 50.29 21.59 42.13 885.52 22.14 25.19 1 1

The short run average cost curve is (approx.) tangent to the long run average cost curve, at q = 30.

IX. Elasticity of substitution > 1

elasticity of scale = 1.0, and

elasticity of substitution = 1.15

and alpha = .35, beta = .4, and gamma = .25.

lnA = 0 aL = 0.349902 aK = 0.399987 aM = 0.25011
bLL = 0.015116 bKK = 0.015516 bMM = 0.012292
bLK = -0.01834 bLM = -0.011892 bKM = 0.012693

R2 = 1.0

Translog Long Run Cost Data
Constant Returns to Scale
Elasticity of Substitution = 1.15
q est q L K M total cost ave. cost marg. cost sLK sLM sKM
20 20 20.06 12.68 19.07 419.74 20.99 17.87 1.15 1.17 0.98
22 22 21.74 13.8 20.77 456.21 20.74 17.58 1.15 1.17 0.98
24 23.99 23.42 14.88 22.44 491.98 20.5 17.33 1.15 1.17 0.98
26 26 25.07 15.98 24.08 527.66 20.29 17.08 1.15 1.17 0.98
28 28 26.71 17.04 25.7 562.69 20.1 16.86 1.15 1.17 0.98
30 29.99 28.32 18.09 27.3 597.16 19.91 16.64 1.15 1.17 0.98
32 31.99 29.9 19.13 28.88 631.35 19.73 16.45 1.15 1.17 0.98
34 33.99 31.48 20.17 30.45 665.17 19.56 16.27 1.15 1.17 0.98
36 36 33.04 21.18 32.01 698.64 19.41 16.1 1.15 1.16 0.98
38 38 34.59 22.17 33.58 731.81 19.26 15.93 1.15 1.16 0.98
40 39.99 36.12 23.15 35.13 764.54 19.11 15.78 1.15 1.16 0.98

X. Short Run: Capital Fixed.

If we set capital at the least cost level for q = 30, then K = 18.086453619194

Translog Short Run Cost Data
Constant Returns to Scale
Elasticity of Substitution = 1.15
q est q L K M total cost ave. cost marg. cost 3 factor
sLM
2 factor
sLM
20 20 15.38 18.09 15.22 434.13 21.71 14.19 1.18 1.13
22 22 17.78 18.09 17.49 464.52 21.11 14.75 1.17 1.12
24 24 20.27 18.09 19.86 496.16 20.67 15.25 1.17 1.12
26 26 22.85 18.09 22.28 528.75 20.34 15.75 1.17 1.12
28 28 25.56 18.09 24.76 562.59 20.09 16.19 1.17 1.12
30 30 28.4 18.09 27.24 597.33 19.91 16.62 1.17 1.12
32 32 31.26 18.09 29.85 633.03 19.78 17.03 1.17 1.12
34 34.01 34.18 18.09 32.54 669.6 19.69 17.39 1.16 1.12
36 36 37.18 18.09 35.23 706.79 19.63 17.77 1.16 1.12
38 38.01 40.26 18.09 38.02 745.08 19.61 18.09 1.16 1.12
40 40 43.4 18.09 40.81 783.82 19.6 18.45 1.16 1.12

The short run average cost curve is (approx.) tangent to the long run average cost curve, at q = 30.

XI. Allen partial elasticity of substitution

Writing the production function as q = F(L,K,M), let the bordered Hessian be:
F =
0 FL FK FM
FL FLL FLK FLM
FK FKL FKK FKM
FM FML FMK FMM
If |F| is the determinant of the bordered Hessian and |FLK| is the cofactor associated with FLK, then the Allen elasticity of substitution is defined as:

sLK = ((FL * L + FK * K + FM *M) / (L * K)) * (|FLK|/|F|)

XII. Two factor elasticity of substitution

Let the production function be q = F(L,K,M), where K is underlined to indicate it is constant in the short-run. Then the two factor (L and M) bordered Hessian is:

F =
0 FL FM
FL FLL FLM
FM FML FMM

The 2-factor elasticity of substitution between L and M is:

sLM = - (FL * L + FM * M) / (L * M ) * (FL * FM) / |F|

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2007-5-24 11:12:00

谢谢楼上的了

不过  我所看的文献与您提供的有些不一样

而且 超越对数成本函数 怎么大多数应用于 非制造业   好郁闷的  都是在银行业 教育业 等基本上提供服务的行业

我想请问下 如果应用在制造业  那 投入要素  该如何限定?

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-12-13 21:38:57
谢谢2楼。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2018-4-14 21:15:32
warecucff 发表于 2007-5-24 08:57
Check
Egwald Economics: Microeconomics (http://www.egwald.com/economics/translogproduction.php)
Pr ...
楼主,这里面是超越对数生产函数的应用,没看到成本函数啊,在哪一块呀,求解释
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群