各位前辈,请帮忙小弟,有没有 超越对数成本函数的 详细说明:包括 各参数的意义.应用该函数进行多元产出成本以及范围经济的应用限制?
麻烦各位了.很急!
小弟谢过各位.
Check
Egwald Economics: Microeconomics (http://www.egwald.com/economics/translogproduction.php)
Production Functions
by
Elmer G. Wiens
Cobb-Douglas | CES | Translog | Diewert | Translog vs Diewert | Diewert vs Translog | Estimate Translog | Estimate Diewert | References and Links
With the Cobb-Douglas and CES production functions, I obtained an explicit cost function, total cost as a function of q, wL, wK, and wM, by minimizing the cost of producing a given level of output. Because the Translog production function is much more general (it has a flexible functional form permitting the partial elasticities of substitution between inputs to vary), I will use numerical analysis to obtain the cost functions associated with a given Translog production function. With the Translog production function, the elasticity of scale can vary with output and factor proportions, permitting its long run average cost curve to take the traditional U-shape.
C. Translog (Transcendental Logarithmic) Production Function
The three factor Translog production function is:
ln(q) = ln(A) + aL*ln(L) + aK*ln(K) + aM*ln(M) + bLL*ln(L)*ln(L) + bKK*ln(K)*ln(K) + bMM*ln(M)*ln(M)
+ bLK*ln(L)*ln(K) + bLM*ln(L)*ln(M) + bKM*ln(K)*ln(M) = f(L,K,M).
where L = labour, K = capital, M = materials and supplies, and q = product.
I. Constant returns to scale:
aL + aK +aM = 1
-2*bLL = bLK + bLM
-2*bKK = bLK + bKM
-2*bMM = bLM + bKM
II. To get estimates for the parameters of the Translog production function, I generated a set of 182 observations (output, factor inputs, factor prices) from a constant returns to scale CES production function, with the
elasticity of scale = 1.0, and
elasticity of substitution = .85.
III. Estimating the translog production function using multiple regression yielded the following coefficient estimates:
lnA = 0 aL = 0.349891 aK = 0.399994 aM = 0.250116
bLL = -0.019665 bKK = -0.021336 bMM = -0.016437
bLK = 0.024565 bLM = 0.014766 bKM = 0.018108
R2 = 1.0 all |t-values| >> 2
Note that this procedure can be used for any set of estimated coefficients, provided we can use the resulting production function in solving, numerically, the least-cost problem below.
IV. Least-cost combination of inputs
Find the values of L, K, M, and µ that minimize the Lagrangian:
G(q;L,K,M,µ) = wL * L + wK * K + wM* M + µ * [q - exp(f(L,K,M))]
To solve equations a. to d., numerically, for given q, wL, wK, and wM, I used the first order conditions a. to d. and the associated Jacobian:
| J = | GLL | GLK | GLM | GLµ |
| GKL | GKK | GKM | GKµ | |
| GML | GMK | GMM | GMµ | |
| GµL | GµK | GµM | Gµµ |
V. Suppose the firm buys its inputs at the prices:
wL = 7 wK = 13 wM = 6
Solving the least-cost problem yields, noting that µ = marginal cost:
| Translog Long Run Cost Data Constant Returns to Scale Elasticity of Substitution = .85 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| q | est q | L | K | M | total cost | ave. cost | marg. cost | sLK | sLM | sKM |
| 20 | 19.99 | 22.7 | 16.96 | 21.91 | 510.87 | 25.54 | 26.79 | 0.84 | 0.84 | 0.85 |
| 22 | 22 | 24.92 | 18.7 | 24.13 | 562.26 | 25.56 | 26.82 | 0.84 | 0.84 | 0.85 |
| 24 | 24 | 27.12 | 20.42 | 26.35 | 613.42 | 25.56 | 26.86 | 0.84 | 0.84 | 0.85 |
| 26 | 26 | 29.33 | 22.15 | 28.57 | 664.63 | 25.56 | 26.9 | 0.84 | 0.84 | 0.85 |
| 28 | 28 | 31.53 | 23.88 | 30.79 | 715.89 | 25.57 | 26.92 | 0.84 | 0.84 | 0.85 |
| 30 | 30.01 | 33.71 | 25.61 | 33.04 | 767.2 | 25.57 | 26.95 | 0.84 | 0.84 | 0.85 |
| 32 | 31.99 | 35.9 | 27.33 | 35.24 | 818.02 | 25.56 | 27 | 0.84 | 0.84 | 0.85 |
| 34 | 33.99 | 38.08 | 29.06 | 37.48 | 869.18 | 25.56 | 27.03 | 0.84 | 0.84 | 0.85 |
| 36 | 36 | 40.26 | 30.8 | 39.72 | 920.54 | 25.57 | 27.05 | 0.84 | 0.84 | 0.85 |
| 38 | 38.01 | 42.43 | 32.56 | 41.97 | 972.08 | 25.58 | 27.06 | 0.84 | 0.84 | 0.86 |
| 40 | 39.99 | 44.61 | 34.28 | 44.17 | 1022.92 | 25.57 | 27.11 | 0.84 | 0.84 | 0.86 |
The Allen partial elasticities of substitution, sLK, sLM, and sKM,are all approximately equal to .85 as expected.
VI. Short Run: Capital Fixed.
If we set capital at the least cost level for q = 30, then K = 25.614838677156
Using the same method as for the long run cost curves, we get:
| Translog Short Run Cost Data Constant Returns to Scale Elasticity of Substitution = .85 | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| q | est q | L | K | M | total cost | ave. cost | marg. cost | 3 factor sLM | 2 factor sLM |
| 20 | 20 | 17.41 | 25.61 | 16.57 | 554.34 | 27.72 | 19.22 | 0.85 | 0.85 |
| 22 | 22 | 20.28 | 25.61 | 19.44 | 591.56 | 26.89 | 20.73 | 0.85 | 0.85 |
| 24 | 24 | 23.31 | 25.61 | 22.53 | 631.35 | 26.31 | 22.25 | 0.85 | 0.85 |
| 26 | 26 | 26.57 | 25.61 | 25.83 | 673.96 | 25.92 | 23.8 | 0.84 | 0.84 |
| 28 | 28 | 30.02 | 25.61 | 29.33 | 719.08 | 25.68 | 25.37 | 0.84 | 0.84 |
| 30 | 30 | 33.64 | 25.61 | 33.09 | 767 | 25.57 | 26.95 | 0.84 | 0.84 |
| 32 | 31.99 | 37.48 | 25.61 | 37.03 | 817.49 | 25.55 | 28.56 | 0.83 | 0.84 |
| 34 | 34 | 41.53 | 25.61 | 41.24 | 871.11 | 25.62 | 30.16 | 0.83 | 0.84 |
| 36 | 35.99 | 45.72 | 25.61 | 45.65 | 926.99 | 25.75 | 31.82 | 0.83 | 0.84 |
| 38 | 38 | 50.14 | 25.61 | 50.34 | 985.99 | 25.95 | 33.48 | 0.82 | 0.83 |
| 40 | 40 | 54.74 | 25.61 | 55.25 | 1047.7 | 26.19 | 35.18 | 0.82 | 0.83 |
So, now again we get a U-shaped, short run average cost curve, with capital fixed.
The short run average cost curve is (approx.) tangent to the long run average cost curve, at q = 30.
Here I have listed two measures of the short-run elasticity of substitution between L and M. The 3-factor measure of sLM uses the Allen partial elasticity of substitution formula. The 2-factor measure of sLM uses the standard short-run formula, which assumes that only L and M can vary with output, with a fixed amount of capital present. Another option would be to estimate a two factor production function q = F(L,M), and then to compute sLM. But then capital, K, is a missing variable from the estimation, skewing the estimates of the coefficients of the production function F
VII. Elasticity of substitution = 1
elasticity of scale = 1.0, and
elasticity of substitution = 1.0
The CES production function collapses into the Cobb-Douglas production function.
lnA = 0 aL = 0.35 aK = 0.45 aM = 0.25
bLL = 0 bKK = 0 bMM = 0
bLK = 0 bLM = 0 bKM = 0
R2 = 1.0
| Translog Long Run Cost Data Constant Returns to Scale Elasticity of Substitution = 1.0 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| q | est q | L | K | M | total cost | ave. cost | marg. cost | sLK | sLM | sKM |
| 20 | 20 | 21.16 | 14.67 | 17.71 | 445.17 | 22.26 | 21.21 | 1 | 1 | 1 |
| 22 | 22 | 23.17 | 16.07 | 19.4 | 487.45 | 22.16 | 21.11 | 1 | 1 | 1 |
| 24 | 24 | 25.16 | 17.47 | 21.09 | 529.74 | 22.07 | 21.02 | 1 | 1 | 1 |
| 26 | 26 | 27.15 | 18.85 | 22.76 | 571.68 | 21.99 | 20.94 | 1 | 1 | 1 |
| 28 | 28 | 29.14 | 20.23 | 24.42 | 613.47 | 21.91 | 20.86 | 1 | 1 | 1 |
| 30 | 29.99 | 31.11 | 21.59 | 26.07 | 654.88 | 21.83 | 20.81 | 1 | 1 | 1 |
| 32 | 31.99 | 33.08 | 22.97 | 27.71 | 696.4 | 21.76 | 20.75 | 1 | 1 | 1 |
| 34 | 34 | 35.04 | 24.35 | 29.36 | 738.02 | 21.71 | 20.68 | 1 | 1 | 1 |
| 36 | 35.99 | 37.01 | 25.7 | 30.98 | 779.09 | 21.64 | 20.64 | 1 | 1 | 1 |
| 38 | 38 | 38.94 | 27.09 | 32.62 | 820.48 | 21.59 | 20.58 | 1 | 1 | 1 |
| 40 | 40 | 40.89 | 28.46 | 34.23 | 861.57 | 21.54 | 20.53 | 1 | 1 | 1 |
VIII. Short Run: Capital Fixed.
If we set capital at the least cost level for q = 30, then K = 21.59291216252
| Translog Short Run Cost Data Constant Returns to Scale Elasticity of Substitution = 1.0 | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| q | est q | L | K | M | total cost | ave. cost | marg. cost | 3 factor sLM | 2 factor sLM |
| 20 | 20 | 15.87 | 21.59 | 13.24 | 471.22 | 23.56 | 15.87 | 1 | 1 |
| 22 | 22 | 18.6 | 21.59 | 15.51 | 503.96 | 22.91 | 16.91 | 1 | 1 |
| 24 | 24 | 21.5 | 21.59 | 17.95 | 538.88 | 22.45 | 17.92 | 1 | 1 |
| 26 | 26 | 24.56 | 21.59 | 20.52 | 575.74 | 22.14 | 18.9 | 1 | 1 |
| 28 | 28 | 27.78 | 21.59 | 23.2 | 614.37 | 21.94 | 19.87 | 1 | 1 |
| 30 | 30 | 31.16 | 21.59 | 26.03 | 655.04 | 21.83 | 20.8 | 1 | 1 |
| 32 | 32 | 34.71 | 21.59 | 29.01 | 697.69 | 21.8 | 21.7 | 1 | 1 |
| 34 | 34 | 38.38 | 21.59 | 32.09 | 741.86 | 21.82 | 22.62 | 1 | 1 |
| 36 | 35.99 | 42.19 | 21.59 | 35.31 | 787.89 | 21.89 | 23.5 | 1 | 1 |
| 38 | 37.99 | 46.18 | 21.59 | 38.62 | 835.71 | 21.99 | 24.36 | 1 | 1 |
| 40 | 40 | 50.29 | 21.59 | 42.13 | 885.52 | 22.14 | 25.19 | 1 | 1 |
The short run average cost curve is (approx.) tangent to the long run average cost curve, at q = 30.
IX. Elasticity of substitution > 1
elasticity of scale = 1.0, and
elasticity of substitution = 1.15
lnA = 0 aL = 0.349902 aK = 0.399987 aM = 0.25011
bLL = 0.015116 bKK = 0.015516 bMM = 0.012292
bLK = -0.01834 bLM = -0.011892 bKM = 0.012693
R2 = 1.0
| Translog Long Run Cost Data Constant Returns to Scale Elasticity of Substitution = 1.15 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| q | est q | L | K | M | total cost | ave. cost | marg. cost | sLK | sLM | sKM |
| 20 | 20 | 20.06 | 12.68 | 19.07 | 419.74 | 20.99 | 17.87 | 1.15 | 1.17 | 0.98 |
| 22 | 22 | 21.74 | 13.8 | 20.77 | 456.21 | 20.74 | 17.58 | 1.15 | 1.17 | 0.98 |
| 24 | 23.99 | 23.42 | 14.88 | 22.44 | 491.98 | 20.5 | 17.33 | 1.15 | 1.17 | 0.98 |
| 26 | 26 | 25.07 | 15.98 | 24.08 | 527.66 | 20.29 | 17.08 | 1.15 | 1.17 | 0.98 |
| 28 | 28 | 26.71 | 17.04 | 25.7 | 562.69 | 20.1 | 16.86 | 1.15 | 1.17 | 0.98 |
| 30 | 29.99 | 28.32 | 18.09 | 27.3 | 597.16 | 19.91 | 16.64 | 1.15 | 1.17 | 0.98 |
| 32 | 31.99 | 29.9 | 19.13 | 28.88 | 631.35 | 19.73 | 16.45 | 1.15 | 1.17 | 0.98 |
| 34 | 33.99 | 31.48 | 20.17 | 30.45 | 665.17 | 19.56 | 16.27 | 1.15 | 1.17 | 0.98 |
| 36 | 36 | 33.04 | 21.18 | 32.01 | 698.64 | 19.41 | 16.1 | 1.15 | 1.16 | 0.98 |
| 38 | 38 | 34.59 | 22.17 | 33.58 | 731.81 | 19.26 | 15.93 | 1.15 | 1.16 | 0.98 |
| 40 | 39.99 | 36.12 | 23.15 | 35.13 | 764.54 | 19.11 | 15.78 | 1.15 | 1.16 | 0.98 |
X. Short Run: Capital Fixed.
If we set capital at the least cost level for q = 30, then K = 18.086453619194
| Translog Short Run Cost Data Constant Returns to Scale Elasticity of Substitution = 1.15 | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| q | est q | L | K | M | total cost | ave. cost | marg. cost | 3 factor sLM | 2 factor sLM |
| 20 | 20 | 15.38 | 18.09 | 15.22 | 434.13 | 21.71 | 14.19 | 1.18 | 1.13 |
| 22 | 22 | 17.78 | 18.09 | 17.49 | 464.52 | 21.11 | 14.75 | 1.17 | 1.12 |
| 24 | 24 | 20.27 | 18.09 | 19.86 | 496.16 | 20.67 | 15.25 | 1.17 | 1.12 |
| 26 | 26 | 22.85 | 18.09 | 22.28 | 528.75 | 20.34 | 15.75 | 1.17 | 1.12 |
| 28 | 28 | 25.56 | 18.09 | 24.76 | 562.59 | 20.09 | 16.19 | 1.17 | 1.12 |
| 30 | 30 | 28.4 | 18.09 | 27.24 | 597.33 | 19.91 | 16.62 | 1.17 | 1.12 |
| 32 | 32 | 31.26 | 18.09 | 29.85 | 633.03 | 19.78 | 17.03 | 1.17 | 1.12 |
| 34 | 34.01 | 34.18 | 18.09 | 32.54 | 669.6 | 19.69 | 17.39 | 1.16 | 1.12 |
| 36 | 36 | 37.18 | 18.09 | 35.23 | 706.79 | 19.63 | 17.77 | 1.16 | 1.12 |
| 38 | 38.01 | 40.26 | 18.09 | 38.02 | 745.08 | 19.61 | 18.09 | 1.16 | 1.12 |
| 40 | 40 | 43.4 | 18.09 | 40.81 | 783.82 | 19.6 | 18.45 | 1.16 | 1.12 |
The short run average cost curve is (approx.) tangent to the long run average cost curve, at q = 30.
XI. Allen partial elasticity of substitution
Writing the production function as q = F(L,K,M), let the bordered Hessian be:| F = | |||
| 0 | FL | FK | FM |
| FL | FLL | FLK | FLM |
| FK | FKL | FKK | FKM |
| FM | FML | FMK | FMM |
sLK = ((FL * L + FK * K + FM *M) / (L * K)) * (|FLK|/|F|)
XII. Two factor elasticity of substitution
Let the production function be q = F(L,K,M), where K is underlined to indicate it is constant in the short-run. Then the two factor (L and M) bordered Hessian is:
| F = | ||
| 0 | FL | FM |
| FL | FLL | FLM |
| FM | FML | FMM |
The 2-factor elasticity of substitution between L and M is:
sLM = - (FL * L + FM * M) / (L * M ) * (FL * FM) / |F|
谢谢楼上的了
不过 我所看的文献与您提供的有些不一样
而且 超越对数成本函数 怎么大多数应用于 非制造业 好郁闷的 都是在银行业 教育业 等基本上提供服务的行业
我想请问下 如果应用在制造业 那 投入要素 该如何限定?
扫码加好友,拉您进群



收藏
