全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
3191 3
2007-07-14
136803.rar
大小:(2.35 MB)

只需: 50 个论坛币  马上下载

本附件包括:

  • Bellman R. Methods of nonlinear analysis, vol.1 0120849011.djvu

<BR>
<P><FONT color=#800080>Methods of Nonlinear Analysis - Volume 1 (Mathematics in Science & Engineering) </FONT></P>

<P><IMG src="http://img201.imageshack.us/img201/8126/0120849011wq6.gif" border=0></P>
<P>Publisher:   Academic Press Inc.,U.S.<BR>Number Of Pages:   340<BR>Publication Date:   1970-04<BR>Sales Rank:   1558515<BR>ISBN / ASIN:   0120849011<BR>EAN:   9780120849017<BR>Binding:   Hardcover<BR>Manufacturer:   Academic Press Inc.,U.S.<BR>Studio:   Academic Press Inc.,U.S.<BR> <BR>CONTENTS <BR>Preface vii <BR>Chapter 1. First- and Second-order Differential Equations <BR>. 1. Introduction 1 <BR>.2. The First-order Linear Differential Equation 2 <BR>.3. Fundamental Inequality 3 <BR>.4. Second-order Linear Differential Equations 5 <BR>.5. Inhomogeneous Equation 7 <BR>.6. Lagrange Variation of Parameters 8 <BR>.7. Two-point Boundary Value Problem 10 <BR>.8. Connection with Calculus of Variations 11 <BR>.9. Green's Functions 12 <BR>.10. Riccati Equation 14 <BR>.11. The Cauchy—Schwarz Inequality 16 <BR>. 12. Perturbation and Stability Theory 18 <BR>. 13. A Counter-example 20 <BR>.14. J°° |/(t)l dt < oo 21 <BR>.15. J°°|/'@l* < oo 22 <BR>. 16. Asymptotic Behavior 23 <BR>.17. The Equation u" — A +/@)« = 0 24 <BR>.18. More Refined Asymptotic Behavior 26 <BR>.19. J°°/>A < oo 27 <BR>.20. The Second Solution 29 <BR>.21. The Liouville Transformation 30 <BR>.22. Elimination of Middle Term 31 <BR>.23. The WKB Approximation 33 <BR>.24. The One-dimensional Schrodinger Equation 33 <BR>.25. u" + A + f{t))u = 0; Asymptotic Behavior 33 <BR>.26. Asymptotic Series . 35 <BR>.27. The Equation «' = p(u, t)jq(u, t) 37 <BR>.28. Monotonicity of Rational Functions of ? and t 38 <BR>.29. Asymptotic Behavior of Solutions of u' = p(u, t)jq(u, i) 39 <BR>Misrellaneous Exercises 42 <BR>UiMioRraphy and Comments 51 <BR>Chapter 2. Matrix Theory <BR>2.1. Introduction 54 <BR>1.2. I)ctcrminantal Solution 55 <BR>2.3. Elimination 58 <BR>2.4. Ill-conditioned Systems 59 <BR>2.5. The Importance of Notation 60 <BR>2.6. Vector Notation 60 <BR>2.7. Norm of a Vector 61 <BR>2.8. Vector Inner Product 61 <BR>2.9. Matrix Notation 63 <BR>2.10. Noncommutativity 64 <BR>2.11. The Adjoint, or Transpose, Matrix 65 <BR>2.12. The Inverse Matrix 65 <BR>2.13. Matrix Norm 67 <BR>2.14. Relative Invariants 68 <BR>2.15. Constrained Minimization 71 <BR>2.16. Symmetric Matrices 72 <BR>2.17. Quadratic Forms 74 <BR>2.18. Multiple Characteristic Roots 75 <BR>2.19. Maximization and Minimization of Quadratic Forms 76 <BR>2.20. Min-Max Characterization of the Xk 77 <BR>2.21. Positive Definite Matrices 79 <BR>2.22. Determinantal Criteria 81 <BR>2.23. Representation for A'1 82 <BR>2.24. Canonical Representation for Arbitrary A 82 <BR>2.25. Perturbation of Characteristic Frequencies 84 <BR>2.26. Separation and Reduction of Dimensionality 85 <BR>2.27. Ill-conditioned Matrices and Tychonov Regularization 86 <BR>2.28. Self-consistent Approach 88 <BR>2.29. Positive Matrices 88 <BR>2.30. Variational Characterization of ?(?) 89 <BR>2.31. Proof of Minimum Property 91 <BR>2.32. Equivalent Definition of ?(?) 92 <BR>Miscellaneous Exercises 94 <BR>Bibliography and Comments 101 <BR>Chapter 3. Matrices and Linear Differential Equations <BR>3.1. Introduction 104 <BR>3.2. Vector-Matrix Calculus 104 <BR>3.3. Existence and Uniqueness of Solution 105 <BR>3.4. The Matrix Exponential 107 <BR>3.5. Commutators 108 <BR>3.6. Inhomogeneous Equation 110 <BR>3.7. The Euler Solution 111 <BR>3.8. Stability of Solution 113 <BR>3.9. Linear Differential Equation with Variable Coefficients 114 <BR>3.10. Linear Inhomogeneous Equation 116 <BR>3.11. Adjoint Equation Ii8 <BR>3.12. The Equation X' = AX + XB 118 <BR>3.13. Periodic Matrices: the Floquet Representation 120 <BR>3.14. Ciilculus of Variations 121 <BR>3.15. Two-point Houndury Condition 122 <BR>3.16. Green's Functions 123 <BR>3.17. The Matrix Riccati Equation 123 <BR>3.18. Kronecker Products and Sums 124 <BR>3.19. AX + XB = ? 125 <BR>3.20. Random Difference Systems 127 <BR>Miscellaneous Exercises 127 <BR>Bibliography and Comments 131 <BR>Chapter 4. Stability Theory and Related Questions <BR>4.1. Introduction 134 <BR>4.2. Dini-Hukuhara Theorem—I 135 <BR>4.3. Dini-Hukuhara Theorem—II 138 <BR>4.4. Inverse Theorems of Perron 140 <BR>4.5. Existence and Uniqueness of Solution 140 <BR>4.6. Poincare-Lyapunov Stability Theory 142 <BR>4.7. Proof of Theorem 143 <BR>4.8. Asymptotic Behavior 146 <BR>4.9. The Function <p(c) 148 <BR>4.10. More Refined Asymptotic Behavior 149 <BR>4.11. Analysis of Method of Successive Approximations 150 <BR>4.12. Fixed-point Methods 152 <BR>4.13. Time-dependent Equations over Finite Intervals 152 <BR>4.14. Alternative Norm 155 <BR>4.15. Perturbation Techniques 156 <BR>4.16. Second Method of Lyapunov 157 <BR>4.17. Solution of Linear Systems 157 <BR>4.18. Origins of Two-point Boundary Value Problems 158 <BR>4.19. Stability Theorem for Two-point Boundary Value Problem 159 <BR>4.20. Asymptotic Behavior 160 <BR>4.21. Numerical Aspects of Linear Two-point Boundary Value Problems 161 <BR>4.22. Difference Methods 163 <BR>4.23. Difference Equations 165 <BR>4.24. Proof of Stability 165 <BR>4.25. Analysis of Stability Proof 166 <BR>4.26. The General Concept of Stability 168 <BR>4.27. Irregular Stability Problems 168 <BR>4.2H. The Emden—Fowler-Fermi—Thomas Equation 170 <BR>Miscellaneous Exercises 171 <BR>HihlioKraphy and Comments 182 <BR>Chapter 5. The Bubnov-Galerkin Method <BR>VI. Introduction 187 <BR>V2. Kxample of the Bubnov-Galerkin Method 188 <BR>V3. Validity of Method 189 <BR>V4. Discussion 190 <BR>V5. The General Approach 190 <BR>V6. Two Nonlineur Differential Equations 192 <BR>5.7. The Nonlinear Spring 193 <BR>5.8. Alternate Average 196 <BR>5.9. Straightforward Perturbation 196 <BR>5.10. A "Tucking-in" Technique 198 <BR>5.11. The Van der Pol Equation 198 <BR>5.12. Two-point Boundary Value Problems 200 <BR>5.13. The Linear Equation L(u) = g 200 <BR>5.14. Method of Moments 202 <BR>5.15. Nonlinear Case 202 <BR>5.16. Newton-Raphson Method 204 <BR>5.17. Multidimensional Newton-Raphson 207 <BR>5.18. Choice of Initial Approximation 208 <BR>5.19. Nonlinear Extrapolation and Acceleration of Convergence 210 <BR>5.20. Alternatives to Newton-Raphson 211 <BR>5.21. Lagrange Expansion 212 <BR>5.22. Method of Moments Applied to Partial Differential Equations 214 <BR>Miscellaneous Exercises 215 <BR>Bibliography and Comments 222 <BR>Chapter 6. Differential Approximation <BR>6.1. Introduction 225 <BR>6.2. Differential Approximation 225 <BR>6.3. Linear Differential Operators 226 <BR>6.4. Computational Aspects—I 226 <BR>6.5. Computational Aspects—II 227 <BR>6.6. Degree of Approximation 228 <BR>6.7. Orthogonal Polynomials 229 <BR>6.8. Improving the Approximation 231 <BR>6.9. Extension of Classical Approximation Theory 231 <BR>6.10. Riccati Approximation 232 <BR>6.11. Transcendentally-transcendent Functions 233 <BR>6.12. Application to Renewal Equation 233 <BR>6.13. An Example 236 <BR>6.14. Differential-Difference Equations 238 <BR>6.15. An Example 239 <BR>6.16. Functional-Differential Equations 240 <BR>6.17. Reduction of Storage in Successive Approximations 242 <BR>6.18. Approximation by Exponentials 242 <BR>6.19. Mean-square Approximation 242 <BR>6.20. Validity of the Method 243 <BR>6.21. A Bootstrap Method 244 <BR>6.22. The Nonlinear Spring 244 <BR>6.23. The Van der Pol Equation 246 <BR>6.24. Self-consistent Techniques 248 <BR>6.25. The Riccati Equation 248 <BR>6.26. Higher-order Approximation 250 <BR>6.27. Mean-square Approximation—Periodic Solutions 251 <BR>Miscellaneous Exercises 253 <BR>Bibliography «nd Comment» 255 <BR>Chapter 7. The Rayleigh-Ritz Method <BR>7.1. Introduction 259 <BR>7.2. The Euler Equation 259 <BR>7.3. The Euler Equation and the Variational Problem 260 <BR>7.4. Quadratic Functionals: Scalar Case 261 <BR>7.5. Positive Definiteness for Small T 263 <BR>7.6. Discussion 264 <BR>7.7. The Rayleigh-Ritz Method 265 <BR>7.8. Validity of the Method 265 <BR>7.9. Monotone Behavior and Convergence 267 <BR>7.10. Estimation of | ? - v in Terms of J(v) — J(u) 268 <BR>7.11. Convergence of Coefficients 269 <BR>7.12. Alternate Estimate 270 <BR>7.13. Successive Approximations 271 <BR>7.14. Determination of the Cofficients 272 <BR>7.15. Multidimensional Case 273 <BR>7.16. Reduction of Dimension 274 <BR>7.17. Minimization of Inequalities 275 <BR>7.18. Extension to Quadratic Functionals 277 <BR>7.19. Linear Integral Equations 279 <BR>7.20. Nonlinear Euler Equation 280 <BR>7.21. Existence and Uniqueness 281 <BR>7.22. Minimizing Property 282 <BR>7.23. Convexity and Uniqueness 282 <BR>7.24. Implied Boundedness 283 <BR>7.25. Lack of Existence of Minimum 284 <BR>7.26. Functional Analysis 284 <BR>7.27. The Euler Equation and Haar's Device 286 <BR>7.28. Discussion 287 <BR>7.29. Successive Approximations 288 <BR>7.30. Lagrange Multiplier 288 <BR>7.31. A Formal Solution Is a Valid Solution 289 <BR>7.32. Raising the Price Diminishes the Demand 289 <BR>7.33. The Courant Parameter 290 <BR>7.34. Control Theory 291 <BR>Miscellaneous Exercises 291 <BR>hihliography and Comments 301 <BR>Chapter 8. Sturm-Liouville Theory <BR>8.1. Equations Involving Parameters 304 <BR>8.2. Stationary Values 305 <BR>8.3. Characteristic Values and Functions 306 <BR>8.4. Properties of Characteristic Values and Functions 307 <BR>H.5. Generalized Fourier Expansion 312 <BR>8.6. Discussion 313 <BR>8.7. Rigorous Formulation of Variational Problem 314 <BR>H.8. Kayleigh-Ritz Method 315 <BR>?.?. Intermediate Problem of Weinstein 316 <BR>8.10. Transplantation 316 <BR>8.11. Positive Definiteness of Quadratic Functionals 317 <BR>8.12. Finite Difference Approximations 318 <BR>8.13. Monotonicity 319 <BR>8.14. Positive Kernels 320 <BR></P>
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2007-7-18 19:29:00
以下内容需要花费现金50才可以浏览,why??
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-2-3 08:43:54
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-5-11 07:44:07
感谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群