全部版块 我的主页
论坛 经管考试 九区 经管考证 金融类
2906 4
2013-03-03
Manual 上有一节单独介绍redington immunization,有木有人可以解释一下啊,书上貌似讲的不太清楚,求指点啊。。。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2013-3-4 03:18:23
3 conditions:
(1) PV of liabilities = PV of assets, at market rate of interest
V(L)=V(A)

(2) Discounted mean term of assets equals the discounted mean term of liabilities
(Σt*V^t*L(t)) / (ΣV^t*L(t)) = (Σt*V^t*A(t)) / (ΣV^t*A(t))

(3) The spread of the liability proceeds about its mean term is less than that of the asset proceeds
(Σt^2*V^t*L(t))/(ΣV^t*L(t)) < (Σt^2*V^t*A(t))/(ΣV^t*A(t))
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-3-4 03:23:43
or if you go with derivative: Let  f (i) =V(L) −V(A)
Apply Taylor’s Expansion:
f (i + ε) = f(i) +εf ′(i) + (ε^2/2) f ′′ (i) + ..... o(i)
then 3 conditions come to:
(1) f(i) = 0
(2) f ′(i) = 0
(3) f ′′ (i) >0
Then, for small ε , f (i +ε ) > f (i) = 0. Hence portfolio is ‘immunised’ against a small change in the ruling interest rate.
i.e., present value of assets will not be lower than present value of the liabilities at the new ruling interest rate i + ε.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-3-5 20:24:39
onlygs 发表于 2013-3-4 03:23
or if you go with derivative: Let  f (i) =V(L) −V(A)
Apply Taylor’s Expansion:
f (i + ε) = ...
Thank you very much
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-3-6 17:07:30
tks~~~~~~~~~~~~
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群